Dirichlet series
| L(s) = 1 | − 6·11-s − 7·13-s + 4·17-s + 5·19-s − 6·23-s + 4·29-s + 8·31-s − 37-s + 2·41-s + 4·43-s + 8·47-s + 8·53-s − 5·61-s − 5·67-s + 4·71-s + 73-s − 11·79-s − 16·83-s − 12·89-s − 11·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
| L(s) = 1 | − 1.80·11-s − 1.94·13-s + 0.970·17-s + 1.14·19-s − 1.25·23-s + 0.742·29-s + 1.43·31-s − 0.164·37-s + 0.312·41-s + 0.609·43-s + 1.16·47-s + 1.09·53-s − 0.640·61-s − 0.610·67-s + 0.474·71-s + 0.117·73-s − 1.23·79-s − 1.75·83-s − 1.27·89-s − 1.11·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
Functional equation
Invariants
| Degree: | \(2\) |
| Conductor: | \(176400\) = \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\) |
| Sign: | $-1$ |
| Analytic conductor: | \(1408.56\) |
| Root analytic conductor: | \(37.5308\) |
| Motivic weight: | \(1\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | yes |
| Self-dual: | yes |
| Analytic rank: | \(1\) |
| Selberg data: | \((2,\ 176400,\ (\ :1/2),\ -1)\) |
Particular Values
| \(L(1)\) | \(=\) | \(0\) |
| \(L(\frac12)\) | \(=\) | \(0\) |
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | ||
| 5 | \( 1 \) | ||
| 7 | \( 1 \) | ||
| good | 11 | \( 1 + 6 T + p T^{2} \) | 1.11.g |
| 13 | \( 1 + 7 T + p T^{2} \) | 1.13.h | |
| 17 | \( 1 - 4 T + p T^{2} \) | 1.17.ae | |
| 19 | \( 1 - 5 T + p T^{2} \) | 1.19.af | |
| 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g | |
| 29 | \( 1 - 4 T + p T^{2} \) | 1.29.ae | |
| 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai | |
| 37 | \( 1 + T + p T^{2} \) | 1.37.b | |
| 41 | \( 1 - 2 T + p T^{2} \) | 1.41.ac | |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae | |
| 47 | \( 1 - 8 T + p T^{2} \) | 1.47.ai | |
| 53 | \( 1 - 8 T + p T^{2} \) | 1.53.ai | |
| 59 | \( 1 + p T^{2} \) | 1.59.a | |
| 61 | \( 1 + 5 T + p T^{2} \) | 1.61.f | |
| 67 | \( 1 + 5 T + p T^{2} \) | 1.67.f | |
| 71 | \( 1 - 4 T + p T^{2} \) | 1.71.ae | |
| 73 | \( 1 - T + p T^{2} \) | 1.73.ab | |
| 79 | \( 1 + 11 T + p T^{2} \) | 1.79.l | |
| 83 | \( 1 + 16 T + p T^{2} \) | 1.83.q | |
| 89 | \( 1 + 12 T + p T^{2} \) | 1.89.m | |
| 97 | \( 1 + 11 T + p T^{2} \) | 1.97.l | |
| show more | |||
| show less | |||
Imaginary part of the first few zeros on the critical line
−13.57839319354847, −12.85438981117386, −12.30729813048248, −12.13228973987872, −11.74979907741798, −10.98505367897430, −10.35265050791990, −10.12511136420293, −9.799233060594554, −9.299672789152756, −8.478606595183099, −7.972740551200085, −7.732537853672091, −7.239802033450648, −6.804580111887278, −5.867212732758621, −5.486520170072100, −5.221352812925778, −4.471467859337450, −4.152253903893798, −3.102640140016508, −2.662489095362699, −2.506628152179176, −1.520890677058106, −0.6912711164795178, 0, 0.6912711164795178, 1.520890677058106, 2.506628152179176, 2.662489095362699, 3.102640140016508, 4.152253903893798, 4.471467859337450, 5.221352812925778, 5.486520170072100, 5.867212732758621, 6.804580111887278, 7.239802033450648, 7.732537853672091, 7.972740551200085, 8.478606595183099, 9.299672789152756, 9.799233060594554, 10.12511136420293, 10.35265050791990, 10.98505367897430, 11.74979907741798, 12.13228973987872, 12.30729813048248, 12.85438981117386, 13.57839319354847