Properties

Label 2-1760-1.1-c1-0-22
Degree $2$
Conductor $1760$
Sign $1$
Analytic cond. $14.0536$
Root an. cond. $3.74882$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 9-s + 11-s + 4·13-s + 2·15-s − 4·17-s + 4·19-s + 2·23-s + 25-s − 4·27-s + 6·29-s + 4·31-s + 2·33-s + 2·37-s + 8·39-s − 2·41-s + 4·43-s + 45-s − 2·47-s − 7·49-s − 8·51-s + 2·53-s + 55-s + 8·57-s − 4·59-s − 2·61-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1/3·9-s + 0.301·11-s + 1.10·13-s + 0.516·15-s − 0.970·17-s + 0.917·19-s + 0.417·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s + 0.718·31-s + 0.348·33-s + 0.328·37-s + 1.28·39-s − 0.312·41-s + 0.609·43-s + 0.149·45-s − 0.291·47-s − 49-s − 1.12·51-s + 0.274·53-s + 0.134·55-s + 1.05·57-s − 0.520·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1760\)    =    \(2^{5} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(14.0536\)
Root analytic conductor: \(3.74882\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.970482138\)
\(L(\frac12)\) \(\approx\) \(2.970482138\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.277658051155937282721557993057, −8.475290682915387059417549067236, −8.044584521886118214744806811584, −6.88816956948104955344182232976, −6.24489673097193351654764436856, −5.18423643032243955059797257659, −4.12137302579351488766401281913, −3.22331889815417909127040494114, −2.42572981750989013699213972497, −1.24575535965830080961625131586, 1.24575535965830080961625131586, 2.42572981750989013699213972497, 3.22331889815417909127040494114, 4.12137302579351488766401281913, 5.18423643032243955059797257659, 6.24489673097193351654764436856, 6.88816956948104955344182232976, 8.044584521886118214744806811584, 8.475290682915387059417549067236, 9.277658051155937282721557993057

Graph of the $Z$-function along the critical line