L(s) = 1 | − 2-s + 3-s + 4-s + 2·5-s − 6-s − 8-s + 9-s − 2·10-s − 4·11-s + 12-s + 6·13-s + 2·15-s + 16-s − 2·17-s − 18-s + 4·19-s + 2·20-s + 4·22-s − 24-s − 25-s − 6·26-s + 27-s − 29-s − 2·30-s − 4·31-s − 32-s − 4·33-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.632·10-s − 1.20·11-s + 0.288·12-s + 1.66·13-s + 0.516·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.917·19-s + 0.447·20-s + 0.852·22-s − 0.204·24-s − 1/5·25-s − 1.17·26-s + 0.192·27-s − 0.185·29-s − 0.365·30-s − 0.718·31-s − 0.176·32-s − 0.696·33-s + ⋯ |
Λ(s)=(=(174s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(174s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.138222379 |
L(21) |
≈ |
1.138222379 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | 1+T | |
| 3 | 1−T | |
| 29 | 1+T | |
good | 5 | 1−2T+pT2 | 1.5.ac |
| 7 | 1+pT2 | 1.7.a |
| 11 | 1+4T+pT2 | 1.11.e |
| 13 | 1−6T+pT2 | 1.13.ag |
| 17 | 1+2T+pT2 | 1.17.c |
| 19 | 1−4T+pT2 | 1.19.ae |
| 23 | 1+pT2 | 1.23.a |
| 31 | 1+4T+pT2 | 1.31.e |
| 37 | 1+6T+pT2 | 1.37.g |
| 41 | 1−6T+pT2 | 1.41.ag |
| 43 | 1+12T+pT2 | 1.43.m |
| 47 | 1+8T+pT2 | 1.47.i |
| 53 | 1+6T+pT2 | 1.53.g |
| 59 | 1−8T+pT2 | 1.59.ai |
| 61 | 1−10T+pT2 | 1.61.ak |
| 67 | 1+4T+pT2 | 1.67.e |
| 71 | 1+8T+pT2 | 1.71.i |
| 73 | 1−2T+pT2 | 1.73.ac |
| 79 | 1−4T+pT2 | 1.79.ae |
| 83 | 1+pT2 | 1.83.a |
| 89 | 1−14T+pT2 | 1.89.ao |
| 97 | 1−18T+pT2 | 1.97.as |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.08350822284660829527532209241, −11.46160956762346043433851090643, −10.51228751975807998983720994202, −9.664379188026696343396565275536, −8.703567572426077992686024733312, −7.83419862053560271569394084997, −6.51962651722825426517927501982, −5.35523044786598344694970550055, −3.32512902126658354016325680833, −1.81977103661582150142638563575,
1.81977103661582150142638563575, 3.32512902126658354016325680833, 5.35523044786598344694970550055, 6.51962651722825426517927501982, 7.83419862053560271569394084997, 8.703567572426077992686024733312, 9.664379188026696343396565275536, 10.51228751975807998983720994202, 11.46160956762346043433851090643, 13.08350822284660829527532209241