Properties

Label 2-17340-1.1-c1-0-14
Degree $2$
Conductor $17340$
Sign $-1$
Analytic cond. $138.460$
Root an. cond. $11.7669$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 3·7-s + 9-s − 3·11-s − 4·13-s − 15-s + 19-s + 3·21-s + 4·23-s + 25-s + 27-s + 3·29-s + 8·31-s − 3·33-s − 3·35-s − 3·37-s − 4·39-s − 5·41-s − 8·43-s − 45-s − 9·47-s + 2·49-s − 7·53-s + 3·55-s + 57-s − 6·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.13·7-s + 1/3·9-s − 0.904·11-s − 1.10·13-s − 0.258·15-s + 0.229·19-s + 0.654·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s + 0.557·29-s + 1.43·31-s − 0.522·33-s − 0.507·35-s − 0.493·37-s − 0.640·39-s − 0.780·41-s − 1.21·43-s − 0.149·45-s − 1.31·47-s + 2/7·49-s − 0.961·53-s + 0.404·55-s + 0.132·57-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17340\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(138.460\)
Root analytic conductor: \(11.7669\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17340,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94310624461460, −15.40968374036256, −15.07512186975964, −14.55524741588766, −13.93737694219807, −13.53698525101783, −12.77308438966482, −12.26285693192401, −11.68953443654999, −11.15308406749444, −10.49394827207639, −9.966140200840387, −9.371338651972188, −8.531765439405709, −8.065613962208627, −7.798057877112287, −7.015952982242438, −6.475483190971579, −5.288597526616989, −4.849362177083357, −4.530524389674700, −3.362958205195643, −2.867826398038598, −2.060520389560167, −1.241535557426066, 0, 1.241535557426066, 2.060520389560167, 2.867826398038598, 3.362958205195643, 4.530524389674700, 4.849362177083357, 5.288597526616989, 6.475483190971579, 7.015952982242438, 7.798057877112287, 8.065613962208627, 8.531765439405709, 9.371338651972188, 9.966140200840387, 10.49394827207639, 11.15308406749444, 11.68953443654999, 12.26285693192401, 12.77308438966482, 13.53698525101783, 13.93737694219807, 14.55524741588766, 15.07512186975964, 15.40968374036256, 15.94310624461460

Graph of the $Z$-function along the critical line