Properties

Label 2-17280-1.1-c1-0-16
Degree $2$
Conductor $17280$
Sign $-1$
Analytic cond. $137.981$
Root an. cond. $11.7465$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 5·11-s + 13-s − 3·17-s + 3·23-s + 25-s + 5·29-s + 31-s − 2·37-s − 6·41-s − 43-s + 9·47-s − 7·49-s + 2·53-s − 5·55-s + 12·59-s − 6·61-s + 65-s + 8·67-s + 8·71-s − 16·73-s − 79-s + 2·83-s − 3·85-s − 4·89-s + 6·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.50·11-s + 0.277·13-s − 0.727·17-s + 0.625·23-s + 1/5·25-s + 0.928·29-s + 0.179·31-s − 0.328·37-s − 0.937·41-s − 0.152·43-s + 1.31·47-s − 49-s + 0.274·53-s − 0.674·55-s + 1.56·59-s − 0.768·61-s + 0.124·65-s + 0.977·67-s + 0.949·71-s − 1.87·73-s − 0.112·79-s + 0.219·83-s − 0.325·85-s − 0.423·89-s + 0.609·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17280\)    =    \(2^{7} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(137.981\)
Root analytic conductor: \(11.7465\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.00614025372550, −15.66271015355450, −15.10342088934757, −14.51539335077359, −13.68126245148624, −13.50335269726635, −12.88117290074863, −12.39722660006501, −11.62850514532601, −11.02575285585950, −10.48171843823121, −10.08246797216746, −9.400689400313364, −8.587955028959563, −8.348054394271076, −7.492614079766164, −6.906073440697384, −6.292753053812917, −5.520382419618456, −5.045374448947065, −4.408114113758932, −3.450969754434169, −2.701963538537407, −2.162519823300761, −1.109583030209035, 0, 1.109583030209035, 2.162519823300761, 2.701963538537407, 3.450969754434169, 4.408114113758932, 5.045374448947065, 5.520382419618456, 6.292753053812917, 6.906073440697384, 7.492614079766164, 8.348054394271076, 8.587955028959563, 9.400689400313364, 10.08246797216746, 10.48171843823121, 11.02575285585950, 11.62850514532601, 12.39722660006501, 12.88117290074863, 13.50335269726635, 13.68126245148624, 14.51539335077359, 15.10342088934757, 15.66271015355450, 16.00614025372550

Graph of the $Z$-function along the critical line