Properties

Label 2-172062-1.1-c1-0-3
Degree $2$
Conductor $172062$
Sign $-1$
Analytic cond. $1373.92$
Root an. cond. $37.0664$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 4·7-s − 8-s + 2·10-s − 6·13-s + 4·14-s + 16-s + 4·19-s − 2·20-s − 25-s + 6·26-s − 4·28-s − 10·29-s + 8·31-s − 32-s + 8·35-s − 4·37-s − 4·38-s + 2·40-s − 10·43-s − 10·47-s + 9·49-s + 50-s − 6·52-s + 4·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 1.51·7-s − 0.353·8-s + 0.632·10-s − 1.66·13-s + 1.06·14-s + 1/4·16-s + 0.917·19-s − 0.447·20-s − 1/5·25-s + 1.17·26-s − 0.755·28-s − 1.85·29-s + 1.43·31-s − 0.176·32-s + 1.35·35-s − 0.657·37-s − 0.648·38-s + 0.316·40-s − 1.52·43-s − 1.45·47-s + 9/7·49-s + 0.141·50-s − 0.832·52-s + 0.549·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172062 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172062 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(172062\)    =    \(2 \cdot 3^{2} \cdot 11^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(1373.92\)
Root analytic conductor: \(37.0664\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 172062,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 \)
79 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 14 T + p T^{2} \) 1.73.o
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26562625253812, −12.95770268006963, −12.33989691278726, −11.91892366855339, −11.68432957150063, −11.15315265031078, −10.35715203444863, −10.00029366724782, −9.684145095390288, −9.295205792944605, −8.720114414980075, −8.019493315215247, −7.714416853708862, −7.151565405461667, −6.852175045229121, −6.322179570714477, −5.617298819447734, −5.136701847631316, −4.460805799443487, −3.792348241332575, −3.222864211120490, −2.932455156787071, −2.182994221430753, −1.453292361795759, −0.4202762662564253, 0, 0.4202762662564253, 1.453292361795759, 2.182994221430753, 2.932455156787071, 3.222864211120490, 3.792348241332575, 4.460805799443487, 5.136701847631316, 5.617298819447734, 6.322179570714477, 6.852175045229121, 7.151565405461667, 7.714416853708862, 8.019493315215247, 8.720114414980075, 9.295205792944605, 9.684145095390288, 10.00029366724782, 10.35715203444863, 11.15315265031078, 11.68432957150063, 11.91892366855339, 12.33989691278726, 12.95770268006963, 13.26562625253812

Graph of the $Z$-function along the critical line