Properties

Label 2-17136-1.1-c1-0-4
Degree $2$
Conductor $17136$
Sign $1$
Analytic cond. $136.831$
Root an. cond. $11.6975$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s + 11-s − 3·13-s + 17-s + 2·19-s + 4·23-s − 4·25-s − 2·31-s − 35-s − 7·37-s + 11·43-s − 10·47-s + 49-s − 9·53-s − 55-s + 4·59-s + 4·61-s + 3·65-s + 13·67-s − 8·71-s − 73-s + 77-s + 79-s + 9·83-s − 85-s − 3·89-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s + 0.301·11-s − 0.832·13-s + 0.242·17-s + 0.458·19-s + 0.834·23-s − 4/5·25-s − 0.359·31-s − 0.169·35-s − 1.15·37-s + 1.67·43-s − 1.45·47-s + 1/7·49-s − 1.23·53-s − 0.134·55-s + 0.520·59-s + 0.512·61-s + 0.372·65-s + 1.58·67-s − 0.949·71-s − 0.117·73-s + 0.113·77-s + 0.112·79-s + 0.987·83-s − 0.108·85-s − 0.317·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17136\)    =    \(2^{4} \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(136.831\)
Root analytic conductor: \(11.6975\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 17136,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.737280975\)
\(L(\frac12)\) \(\approx\) \(1.737280975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.82108051335738, −15.38643000939478, −14.64678455496260, −14.35204551070594, −13.79701731404054, −12.97381119670214, −12.55926278733974, −11.92365378868471, −11.43018854335410, −10.99050200212918, −10.17976048609261, −9.697228779325314, −9.050324872734100, −8.478704456058056, −7.665965909525166, −7.429907843166951, −6.675235509865563, −5.941517989992321, −5.134033672085987, −4.757276731172088, −3.848836086985473, −3.304929695723596, −2.394881084243522, −1.590610638797747, −0.5667655103645775, 0.5667655103645775, 1.590610638797747, 2.394881084243522, 3.304929695723596, 3.848836086985473, 4.757276731172088, 5.134033672085987, 5.941517989992321, 6.675235509865563, 7.429907843166951, 7.665965909525166, 8.478704456058056, 9.050324872734100, 9.697228779325314, 10.17976048609261, 10.99050200212918, 11.43018854335410, 11.92365378868471, 12.55926278733974, 12.97381119670214, 13.79701731404054, 14.35204551070594, 14.64678455496260, 15.38643000939478, 15.82108051335738

Graph of the $Z$-function along the critical line