Properties

Label 2-167310-1.1-c1-0-80
Degree $2$
Conductor $167310$
Sign $-1$
Analytic cond. $1335.97$
Root an. cond. $36.5510$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s − 11-s + 16-s + 2·17-s − 2·19-s − 20-s + 22-s + 6·23-s + 25-s + 2·29-s − 32-s − 2·34-s + 6·37-s + 2·38-s + 40-s − 2·41-s − 2·43-s − 44-s − 6·46-s + 2·47-s − 7·49-s − 50-s + 2·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 0.301·11-s + 1/4·16-s + 0.485·17-s − 0.458·19-s − 0.223·20-s + 0.213·22-s + 1.25·23-s + 1/5·25-s + 0.371·29-s − 0.176·32-s − 0.342·34-s + 0.986·37-s + 0.324·38-s + 0.158·40-s − 0.312·41-s − 0.304·43-s − 0.150·44-s − 0.884·46-s + 0.291·47-s − 49-s − 0.141·50-s + 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 167310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(167310\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1335.97\)
Root analytic conductor: \(36.5510\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 167310,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46266480430679, −12.72296010737360, −12.64165941379814, −11.99361120395195, −11.36444371458911, −11.16383594625677, −10.62886597984426, −10.09261237460655, −9.691666457833211, −9.128990830147583, −8.648728446772395, −8.212418034494943, −7.697635877908338, −7.347197591673395, −6.626665459202390, −6.394921778447466, −5.612850762768487, −5.076397882728989, −4.586480839315145, −3.874544778000316, −3.282394480532675, −2.767216847439520, −2.171176472155364, −1.350237396935911, −0.7950458142659032, 0, 0.7950458142659032, 1.350237396935911, 2.171176472155364, 2.767216847439520, 3.282394480532675, 3.874544778000316, 4.586480839315145, 5.076397882728989, 5.612850762768487, 6.394921778447466, 6.626665459202390, 7.347197591673395, 7.697635877908338, 8.212418034494943, 8.648728446772395, 9.128990830147583, 9.691666457833211, 10.09261237460655, 10.62886597984426, 11.16383594625677, 11.36444371458911, 11.99361120395195, 12.64165941379814, 12.72296010737360, 13.46266480430679

Graph of the $Z$-function along the critical line