Properties

Label 2-165825-1.1-c1-0-10
Degree $2$
Conductor $165825$
Sign $1$
Analytic cond. $1324.11$
Root an. cond. $36.3884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 2·7-s − 11-s + 4·16-s + 3·17-s + 4·19-s − 7·23-s − 4·28-s − 3·29-s + 8·31-s + 6·37-s − 8·41-s + 6·43-s + 2·44-s − 3·49-s − 8·53-s + 9·59-s + 6·61-s − 8·64-s − 67-s − 6·68-s − 13·71-s + 11·73-s − 8·76-s − 2·77-s + 10·79-s + 9·83-s + ⋯
L(s)  = 1  − 4-s + 0.755·7-s − 0.301·11-s + 16-s + 0.727·17-s + 0.917·19-s − 1.45·23-s − 0.755·28-s − 0.557·29-s + 1.43·31-s + 0.986·37-s − 1.24·41-s + 0.914·43-s + 0.301·44-s − 3/7·49-s − 1.09·53-s + 1.17·59-s + 0.768·61-s − 64-s − 0.122·67-s − 0.727·68-s − 1.54·71-s + 1.28·73-s − 0.917·76-s − 0.227·77-s + 1.12·79-s + 0.987·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165825\)    =    \(3^{2} \cdot 5^{2} \cdot 11 \cdot 67\)
Sign: $1$
Analytic conductor: \(1324.11\)
Root analytic conductor: \(36.3884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 165825,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.151120898\)
\(L(\frac12)\) \(\approx\) \(2.151120898\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
67 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30566710625526, −12.83873814184954, −12.23801774294862, −11.88916987538857, −11.43767498290149, −10.87788334178277, −10.14725541079315, −9.955978300360373, −9.515574945579397, −8.917330944905970, −8.300245438573519, −7.953908781632720, −7.732184874979574, −7.008231321614952, −6.228834948750947, −5.773078041870974, −5.303487330281137, −4.732739879924176, −4.415605147925750, −3.653073719175898, −3.298006111370422, −2.475503913381602, −1.790080289319179, −1.075059417574440, −0.4983020833954347, 0.4983020833954347, 1.075059417574440, 1.790080289319179, 2.475503913381602, 3.298006111370422, 3.653073719175898, 4.415605147925750, 4.732739879924176, 5.303487330281137, 5.773078041870974, 6.228834948750947, 7.008231321614952, 7.732184874979574, 7.953908781632720, 8.300245438573519, 8.917330944905970, 9.515574945579397, 9.955978300360373, 10.14725541079315, 10.87788334178277, 11.43767498290149, 11.88916987538857, 12.23801774294862, 12.83873814184954, 13.30566710625526

Graph of the $Z$-function along the critical line