Properties

Label 2-1650-1.1-c1-0-12
Degree $2$
Conductor $1650$
Sign $1$
Analytic cond. $13.1753$
Root an. cond. $3.62978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 3·7-s + 8-s + 9-s + 11-s − 12-s + 3·14-s + 16-s + 5·17-s + 18-s − 19-s − 3·21-s + 22-s − 3·23-s − 24-s − 27-s + 3·28-s + 2·29-s − 6·31-s + 32-s − 33-s + 5·34-s + 36-s + 3·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 1.13·7-s + 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s + 0.801·14-s + 1/4·16-s + 1.21·17-s + 0.235·18-s − 0.229·19-s − 0.654·21-s + 0.213·22-s − 0.625·23-s − 0.204·24-s − 0.192·27-s + 0.566·28-s + 0.371·29-s − 1.07·31-s + 0.176·32-s − 0.174·33-s + 0.857·34-s + 1/6·36-s + 0.493·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(13.1753\)
Root analytic conductor: \(3.62978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.679083260\)
\(L(\frac12)\) \(\approx\) \(2.679083260\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 9 T + p T^{2} \) 1.97.j
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.489789657857333122762707892352, −8.383155186282888579791302033314, −7.66737317715158516555540856881, −6.90539921428856432935154258796, −5.84511815958380437455003692156, −5.34821434610320217102293580896, −4.43471661439712863635057431375, −3.66663123638046994304458528693, −2.27390251266660564599788993596, −1.16167432076173546905736506109, 1.16167432076173546905736506109, 2.27390251266660564599788993596, 3.66663123638046994304458528693, 4.43471661439712863635057431375, 5.34821434610320217102293580896, 5.84511815958380437455003692156, 6.90539921428856432935154258796, 7.66737317715158516555540856881, 8.383155186282888579791302033314, 9.489789657857333122762707892352

Graph of the $Z$-function along the critical line