Properties

Label 2-1650-1.1-c1-0-7
Degree $2$
Conductor $1650$
Sign $1$
Analytic cond. $13.1753$
Root an. cond. $3.62978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 2·7-s − 8-s + 9-s − 11-s + 12-s + 13-s − 2·14-s + 16-s + 4·17-s − 18-s + 19-s + 2·21-s + 22-s + 23-s − 24-s − 26-s + 27-s + 2·28-s − 9·29-s + 3·31-s − 32-s − 33-s − 4·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.301·11-s + 0.288·12-s + 0.277·13-s − 0.534·14-s + 1/4·16-s + 0.970·17-s − 0.235·18-s + 0.229·19-s + 0.436·21-s + 0.213·22-s + 0.208·23-s − 0.204·24-s − 0.196·26-s + 0.192·27-s + 0.377·28-s − 1.67·29-s + 0.538·31-s − 0.176·32-s − 0.174·33-s − 0.685·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(13.1753\)
Root analytic conductor: \(3.62978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.743895178\)
\(L(\frac12)\) \(\approx\) \(1.743895178\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 11 T + p T^{2} \) 1.71.al
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.394060326197841698248702732723, −8.537638379467561859664400355794, −7.75947724847373495220663686984, −7.46978861737166408888698818411, −6.21449230466502714506573926069, −5.36748707321625929087646916500, −4.26058028072949363648343209841, −3.19461026218671026134723225707, −2.16544976977216524243966688268, −1.05824878957084615629267235820, 1.05824878957084615629267235820, 2.16544976977216524243966688268, 3.19461026218671026134723225707, 4.26058028072949363648343209841, 5.36748707321625929087646916500, 6.21449230466502714506573926069, 7.46978861737166408888698818411, 7.75947724847373495220663686984, 8.537638379467561859664400355794, 9.394060326197841698248702732723

Graph of the $Z$-function along the critical line