Properties

Label 2-163370-1.1-c1-0-2
Degree $2$
Conductor $163370$
Sign $1$
Analytic cond. $1304.51$
Root an. cond. $36.1180$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 5-s − 2·6-s + 5·7-s + 8-s + 9-s − 10-s + 3·11-s − 2·12-s − 5·13-s + 5·14-s + 2·15-s + 16-s + 17-s + 18-s + 19-s − 20-s − 10·21-s + 3·22-s + 4·23-s − 2·24-s + 25-s − 5·26-s + 4·27-s + 5·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.447·5-s − 0.816·6-s + 1.88·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.904·11-s − 0.577·12-s − 1.38·13-s + 1.33·14-s + 0.516·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 0.229·19-s − 0.223·20-s − 2.18·21-s + 0.639·22-s + 0.834·23-s − 0.408·24-s + 1/5·25-s − 0.980·26-s + 0.769·27-s + 0.944·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 163370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 163370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(163370\)    =    \(2 \cdot 5 \cdot 17 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(1304.51\)
Root analytic conductor: \(36.1180\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 163370,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.387495987\)
\(L(\frac12)\) \(\approx\) \(2.387495987\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 - T \)
31 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15759084683723, −12.58719079842447, −12.13046202401104, −11.69128120633542, −11.61384483485271, −11.10542383673150, −10.66379416389915, −10.19363092114858, −9.444911445287634, −8.946308039789504, −8.242961989177132, −7.834523477897197, −7.356106907229090, −6.762183528977051, −6.503183573130941, −5.482757520643336, −5.320961825890138, −4.931424814751884, −4.466990957131664, −3.928401443224832, −3.213022483147899, −2.500037410159156, −1.666907342305055, −1.366546363235042, −0.4324003792280718, 0.4324003792280718, 1.366546363235042, 1.666907342305055, 2.500037410159156, 3.213022483147899, 3.928401443224832, 4.466990957131664, 4.931424814751884, 5.320961825890138, 5.482757520643336, 6.503183573130941, 6.762183528977051, 7.356106907229090, 7.834523477897197, 8.242961989177132, 8.946308039789504, 9.444911445287634, 10.19363092114858, 10.66379416389915, 11.10542383673150, 11.61384483485271, 11.69128120633542, 12.13046202401104, 12.58719079842447, 13.15759084683723

Graph of the $Z$-function along the critical line