Properties

Label 2-162576-1.1-c1-0-4
Degree $2$
Conductor $162576$
Sign $1$
Analytic cond. $1298.17$
Root an. cond. $36.0302$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 6·11-s + 4·13-s − 6·17-s + 2·19-s − 25-s + 4·29-s + 8·31-s − 4·37-s − 6·41-s + 4·43-s − 7·49-s + 10·53-s − 12·55-s + 14·59-s + 12·61-s − 8·65-s + 2·67-s + 8·71-s + 10·73-s − 16·79-s − 14·83-s + 12·85-s + 6·89-s − 4·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.80·11-s + 1.10·13-s − 1.45·17-s + 0.458·19-s − 1/5·25-s + 0.742·29-s + 1.43·31-s − 0.657·37-s − 0.937·41-s + 0.609·43-s − 49-s + 1.37·53-s − 1.61·55-s + 1.82·59-s + 1.53·61-s − 0.992·65-s + 0.244·67-s + 0.949·71-s + 1.17·73-s − 1.80·79-s − 1.53·83-s + 1.30·85-s + 0.635·89-s − 0.410·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162576\)    =    \(2^{4} \cdot 3^{2} \cdot 1129\)
Sign: $1$
Analytic conductor: \(1298.17\)
Root analytic conductor: \(36.0302\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.808458008\)
\(L(\frac12)\) \(\approx\) \(2.808458008\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
1129 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.32871255921759, −12.75886683493845, −12.17374125613018, −11.64176629689670, −11.53763583010586, −11.11171333684553, −10.46207875213478, −9.813440221625873, −9.500248860963860, −8.678685134692815, −8.431945244859177, −8.304852555703580, −7.229377491533754, −6.882688577997475, −6.568554926180570, −6.005929147744537, −5.362135880727613, −4.572043673725644, −4.195738044161537, −3.758290970378728, −3.336779541026578, −2.495151449622413, −1.802530851548842, −1.071363033579581, −0.5719679212339373, 0.5719679212339373, 1.071363033579581, 1.802530851548842, 2.495151449622413, 3.336779541026578, 3.758290970378728, 4.195738044161537, 4.572043673725644, 5.362135880727613, 6.005929147744537, 6.568554926180570, 6.882688577997475, 7.229377491533754, 8.304852555703580, 8.431945244859177, 8.678685134692815, 9.500248860963860, 9.813440221625873, 10.46207875213478, 11.11171333684553, 11.53763583010586, 11.64176629689670, 12.17374125613018, 12.75886683493845, 13.32871255921759

Graph of the $Z$-function along the critical line