Properties

Label 2-162288-1.1-c1-0-167
Degree $2$
Conductor $162288$
Sign $1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 5·11-s + 4·17-s + 23-s + 4·25-s + 3·29-s + 9·31-s − 12·37-s − 12·41-s − 6·43-s + 2·47-s − 5·53-s + 15·55-s − 9·59-s − 2·61-s + 2·67-s + 6·71-s − 14·73-s − 11·79-s − 17·83-s − 12·85-s − 10·89-s − 13·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.50·11-s + 0.970·17-s + 0.208·23-s + 4/5·25-s + 0.557·29-s + 1.61·31-s − 1.97·37-s − 1.87·41-s − 0.914·43-s + 0.291·47-s − 0.686·53-s + 2.02·55-s − 1.17·59-s − 0.256·61-s + 0.244·67-s + 0.712·71-s − 1.63·73-s − 1.23·79-s − 1.86·83-s − 1.30·85-s − 1.05·89-s − 1.31·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64629922765229, −13.37535102957205, −12.54117023986371, −12.35754801729050, −11.83359088982506, −11.52768656962550, −10.82013964513224, −10.43056906329424, −10.06252077352836, −9.570289792071275, −8.626250073542864, −8.299849318530916, −8.114301350734684, −7.490046061293148, −6.981501846225483, −6.637345976386022, −5.672392577191721, −5.372118679337146, −4.710312695510560, −4.379320854421261, −3.591897081703813, −2.963660447777502, −2.923360479262027, −1.776076768561802, −1.152744491264893, 0, 0, 1.152744491264893, 1.776076768561802, 2.923360479262027, 2.963660447777502, 3.591897081703813, 4.379320854421261, 4.710312695510560, 5.372118679337146, 5.672392577191721, 6.637345976386022, 6.981501846225483, 7.490046061293148, 8.114301350734684, 8.299849318530916, 8.626250073542864, 9.570289792071275, 10.06252077352836, 10.43056906329424, 10.82013964513224, 11.52768656962550, 11.83359088982506, 12.35754801729050, 12.54117023986371, 13.37535102957205, 13.64629922765229

Graph of the $Z$-function along the critical line