Properties

Label 2-15925-1.1-c1-0-24
Degree $2$
Conductor $15925$
Sign $1$
Analytic cond. $127.161$
Root an. cond. $11.2766$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s + 3·8-s − 3·9-s − 3·11-s + 13-s − 16-s − 7·17-s + 3·18-s − 7·19-s + 3·22-s + 6·23-s − 26-s − 5·29-s − 5·32-s + 7·34-s + 3·36-s − 8·37-s + 7·38-s − 2·43-s + 3·44-s − 6·46-s − 7·47-s − 52-s + 3·53-s + 5·58-s − 7·59-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s + 1.06·8-s − 9-s − 0.904·11-s + 0.277·13-s − 1/4·16-s − 1.69·17-s + 0.707·18-s − 1.60·19-s + 0.639·22-s + 1.25·23-s − 0.196·26-s − 0.928·29-s − 0.883·32-s + 1.20·34-s + 1/2·36-s − 1.31·37-s + 1.13·38-s − 0.304·43-s + 0.452·44-s − 0.884·46-s − 1.02·47-s − 0.138·52-s + 0.412·53-s + 0.656·58-s − 0.911·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15925\)    =    \(5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(127.161\)
Root analytic conductor: \(11.2766\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 15925,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.74312990585392, −16.08043443082615, −15.38179615009993, −14.94308052391517, −14.36853510939713, −13.57216693157896, −13.18361830429197, −12.91745948874674, −11.99471764637602, −11.17902668948490, −10.75864881357139, −10.52959164662607, −9.560367207549163, −8.945824040680706, −8.627928950388395, −8.202904059111420, −7.384946235278394, −6.759577171179702, −6.045279016740420, −5.246634122129710, −4.718336116905481, −4.045372263128988, −3.117600263312535, −2.321011863739740, −1.541706333034485, 0, 0, 1.541706333034485, 2.321011863739740, 3.117600263312535, 4.045372263128988, 4.718336116905481, 5.246634122129710, 6.045279016740420, 6.759577171179702, 7.384946235278394, 8.202904059111420, 8.627928950388395, 8.945824040680706, 9.560367207549163, 10.52959164662607, 10.75864881357139, 11.17902668948490, 11.99471764637602, 12.91745948874674, 13.18361830429197, 13.57216693157896, 14.36853510939713, 14.94308052391517, 15.38179615009993, 16.08043443082615, 16.74312990585392

Graph of the $Z$-function along the critical line