Properties

Label 2-158400-1.1-c1-0-41
Degree $2$
Conductor $158400$
Sign $1$
Analytic cond. $1264.83$
Root an. cond. $35.5644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 11-s + 6·13-s − 4·17-s + 2·19-s − 8·23-s − 6·37-s + 10·43-s − 3·49-s − 14·53-s − 12·59-s + 14·61-s + 4·67-s − 6·73-s + 2·77-s + 2·79-s − 16·83-s + 14·89-s − 12·91-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 8·119-s + ⋯
L(s)  = 1  − 0.755·7-s − 0.301·11-s + 1.66·13-s − 0.970·17-s + 0.458·19-s − 1.66·23-s − 0.986·37-s + 1.52·43-s − 3/7·49-s − 1.92·53-s − 1.56·59-s + 1.79·61-s + 0.488·67-s − 0.702·73-s + 0.227·77-s + 0.225·79-s − 1.75·83-s + 1.48·89-s − 1.25·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 0.733·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 158400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(158400\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1264.83\)
Root analytic conductor: \(35.5644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 158400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.163017097\)
\(L(\frac12)\) \(\approx\) \(1.163017097\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22351219658447, −12.94521470763033, −12.36858065457872, −11.90892072452170, −11.26821247770575, −10.95287439681612, −10.49414449726519, −9.866685024673940, −9.540797504009993, −8.869900571679986, −8.565534336845410, −7.981773337768273, −7.503879259461153, −6.848545842315174, −6.265055038826512, −6.072919764411914, −5.517147923737804, −4.726619175809932, −4.231939436487807, −3.573859987220961, −3.311352886630987, −2.486156890270892, −1.881300200086386, −1.219180727537219, −0.3225212395025435, 0.3225212395025435, 1.219180727537219, 1.881300200086386, 2.486156890270892, 3.311352886630987, 3.573859987220961, 4.231939436487807, 4.726619175809932, 5.517147923737804, 6.072919764411914, 6.265055038826512, 6.848545842315174, 7.503879259461153, 7.981773337768273, 8.565534336845410, 8.869900571679986, 9.540797504009993, 9.866685024673940, 10.49414449726519, 10.95287439681612, 11.26821247770575, 11.90892072452170, 12.36858065457872, 12.94521470763033, 13.22351219658447

Graph of the $Z$-function along the critical line