Properties

Label 2-155584-1.1-c1-0-3
Degree $2$
Conductor $155584$
Sign $1$
Analytic cond. $1242.34$
Root an. cond. $35.2469$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 7-s + 9-s − 11-s − 13-s − 2·15-s + 17-s + 2·21-s − 3·23-s − 4·25-s − 4·27-s − 5·29-s + 2·31-s − 2·33-s − 35-s + 6·37-s − 2·39-s + 3·41-s + 5·43-s − 45-s − 6·49-s + 2·51-s − 2·53-s + 55-s − 7·59-s − 5·61-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.301·11-s − 0.277·13-s − 0.516·15-s + 0.242·17-s + 0.436·21-s − 0.625·23-s − 4/5·25-s − 0.769·27-s − 0.928·29-s + 0.359·31-s − 0.348·33-s − 0.169·35-s + 0.986·37-s − 0.320·39-s + 0.468·41-s + 0.762·43-s − 0.149·45-s − 6/7·49-s + 0.280·51-s − 0.274·53-s + 0.134·55-s − 0.911·59-s − 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 155584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 155584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(155584\)    =    \(2^{6} \cdot 11 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(1242.34\)
Root analytic conductor: \(35.2469\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 155584,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.361072956\)
\(L(\frac12)\) \(\approx\) \(2.361072956\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - T + p T^{2} \) 1.7.ab
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39800148044406, −12.89004022791890, −12.41184052152500, −11.90911063346157, −11.32563392216684, −11.06652249002069, −10.36918119814669, −9.796448957483840, −9.411151472642036, −9.002638696808274, −8.355661104485009, −7.894568288429000, −7.695072356388655, −7.289228189480466, −6.368489889957484, −5.957472206804215, −5.359098937120068, −4.630965081768256, −4.247937322323568, −3.507215847267434, −3.278548493261801, −2.352835910340325, −2.169431297775619, −1.340685576180072, −0.4048747596353470, 0.4048747596353470, 1.340685576180072, 2.169431297775619, 2.352835910340325, 3.278548493261801, 3.507215847267434, 4.247937322323568, 4.630965081768256, 5.359098937120068, 5.957472206804215, 6.368489889957484, 7.289228189480466, 7.695072356388655, 7.894568288429000, 8.355661104485009, 9.002638696808274, 9.411151472642036, 9.796448957483840, 10.36918119814669, 11.06652249002069, 11.32563392216684, 11.90911063346157, 12.41184052152500, 12.89004022791890, 13.39800148044406

Graph of the $Z$-function along the critical line