Properties

Label 2-152592-1.1-c1-0-56
Degree $2$
Conductor $152592$
Sign $-1$
Analytic cond. $1218.45$
Root an. cond. $34.9063$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 4·7-s + 9-s + 11-s + 2·13-s − 15-s + 4·21-s + 9·23-s − 4·25-s − 27-s + 4·29-s − 5·31-s − 33-s − 4·35-s + 10·37-s − 2·39-s − 4·41-s + 6·43-s + 45-s + 47-s + 9·49-s + 2·53-s + 55-s − 12·59-s − 4·63-s + 2·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s + 0.554·13-s − 0.258·15-s + 0.872·21-s + 1.87·23-s − 4/5·25-s − 0.192·27-s + 0.742·29-s − 0.898·31-s − 0.174·33-s − 0.676·35-s + 1.64·37-s − 0.320·39-s − 0.624·41-s + 0.914·43-s + 0.149·45-s + 0.145·47-s + 9/7·49-s + 0.274·53-s + 0.134·55-s − 1.56·59-s − 0.503·63-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152592\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1218.45\)
Root analytic conductor: \(34.9063\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51871418272966, −13.06931147885201, −12.65784351634226, −12.22098755082197, −11.69744515563877, −11.06666413692838, −10.74005826279155, −10.25340361558647, −9.656723455633196, −9.235386536945076, −9.066247696503709, −8.285880111797098, −7.501784625714237, −7.192352918328922, −6.517821685109475, −6.063391022920810, −6.002135136345856, −5.099856268506927, −4.690800206557877, −3.877348783770159, −3.474742489098766, −2.852117569410229, −2.293572994318907, −1.346317431258522, −0.8287178449727613, 0, 0.8287178449727613, 1.346317431258522, 2.293572994318907, 2.852117569410229, 3.474742489098766, 3.877348783770159, 4.690800206557877, 5.099856268506927, 6.002135136345856, 6.063391022920810, 6.517821685109475, 7.192352918328922, 7.501784625714237, 8.285880111797098, 9.066247696503709, 9.235386536945076, 9.656723455633196, 10.25340361558647, 10.74005826279155, 11.06666413692838, 11.69744515563877, 12.22098755082197, 12.65784351634226, 13.06931147885201, 13.51871418272966

Graph of the $Z$-function along the critical line