Properties

Label 2-152592-1.1-c1-0-74
Degree $2$
Conductor $152592$
Sign $-1$
Analytic cond. $1218.45$
Root an. cond. $34.9063$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 4·7-s + 9-s + 11-s + 6·13-s + 2·15-s − 4·19-s − 4·21-s − 25-s − 27-s − 2·29-s − 33-s − 8·35-s + 10·37-s − 6·39-s + 10·41-s + 4·43-s − 2·45-s − 4·47-s + 9·49-s − 2·53-s − 2·55-s + 4·57-s − 2·61-s + 4·63-s − 12·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1.51·7-s + 1/3·9-s + 0.301·11-s + 1.66·13-s + 0.516·15-s − 0.917·19-s − 0.872·21-s − 1/5·25-s − 0.192·27-s − 0.371·29-s − 0.174·33-s − 1.35·35-s + 1.64·37-s − 0.960·39-s + 1.56·41-s + 0.609·43-s − 0.298·45-s − 0.583·47-s + 9/7·49-s − 0.274·53-s − 0.269·55-s + 0.529·57-s − 0.256·61-s + 0.503·63-s − 1.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152592\)    =    \(2^{4} \cdot 3 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1218.45\)
Root analytic conductor: \(34.9063\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 152592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57289250696498, −13.05090568975636, −12.47101735304723, −12.09102540959063, −11.40727046410978, −11.25799621748308, −10.87277352761284, −10.60581987881638, −9.645916138830774, −9.218159561780343, −8.557063044241392, −8.189841634905395, −7.791533014507567, −7.392594867652095, −6.601716188713106, −6.120593426704358, −5.741058052721782, −5.044771450521321, −4.429357607301474, −4.080063921817182, −3.760720544690236, −2.802702058857885, −2.071259844110770, −1.335051549480543, −0.9711590103219861, 0, 0.9711590103219861, 1.335051549480543, 2.071259844110770, 2.802702058857885, 3.760720544690236, 4.080063921817182, 4.429357607301474, 5.044771450521321, 5.741058052721782, 6.120593426704358, 6.601716188713106, 7.392594867652095, 7.791533014507567, 8.189841634905395, 8.557063044241392, 9.218159561780343, 9.645916138830774, 10.60581987881638, 10.87277352761284, 11.25799621748308, 11.40727046410978, 12.09102540959063, 12.47101735304723, 13.05090568975636, 13.57289250696498

Graph of the $Z$-function along the critical line