Properties

Label 2-150480-1.1-c1-0-85
Degree $2$
Conductor $150480$
Sign $-1$
Analytic cond. $1201.58$
Root an. cond. $34.6639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s + 4·13-s + 2·17-s + 19-s + 4·23-s + 25-s + 2·29-s − 4·31-s + 8·37-s + 6·41-s − 12·43-s + 8·47-s − 7·49-s − 4·53-s + 55-s − 12·59-s + 10·61-s − 4·65-s + 2·67-s − 12·71-s + 14·73-s − 12·79-s − 8·83-s − 2·85-s − 6·89-s − 95-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s + 1.10·13-s + 0.485·17-s + 0.229·19-s + 0.834·23-s + 1/5·25-s + 0.371·29-s − 0.718·31-s + 1.31·37-s + 0.937·41-s − 1.82·43-s + 1.16·47-s − 49-s − 0.549·53-s + 0.134·55-s − 1.56·59-s + 1.28·61-s − 0.496·65-s + 0.244·67-s − 1.42·71-s + 1.63·73-s − 1.35·79-s − 0.878·83-s − 0.216·85-s − 0.635·89-s − 0.102·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150480\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(1201.58\)
Root analytic conductor: \(34.6639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 150480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
19 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54901221347234, −13.00276945946786, −12.73294209807528, −12.19197111703726, −11.47227960991618, −11.28878498430507, −10.82183230055237, −10.26409469084009, −9.723221309959756, −9.242950990180992, −8.681195797526370, −8.236459590107524, −7.813724154664069, −7.212343156665556, −6.821980916439028, −5.996175431694161, −5.859173199111862, −5.014417848244965, −4.615864514788063, −3.961875201321334, −3.357539756709952, −3.009919745089998, −2.235888218514837, −1.387025372421008, −0.9225614662503773, 0, 0.9225614662503773, 1.387025372421008, 2.235888218514837, 3.009919745089998, 3.357539756709952, 3.961875201321334, 4.615864514788063, 5.014417848244965, 5.859173199111862, 5.996175431694161, 6.821980916439028, 7.212343156665556, 7.813724154664069, 8.236459590107524, 8.681195797526370, 9.242950990180992, 9.723221309959756, 10.26409469084009, 10.82183230055237, 11.28878498430507, 11.47227960991618, 12.19197111703726, 12.73294209807528, 13.00276945946786, 13.54901221347234

Graph of the $Z$-function along the critical line