Properties

Label 2-14976-1.1-c1-0-27
Degree $2$
Conductor $14976$
Sign $-1$
Analytic cond. $119.583$
Root an. cond. $10.9354$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 13-s − 2·17-s + 4·23-s − 25-s − 2·29-s − 2·31-s − 4·35-s − 6·37-s + 6·41-s + 2·43-s + 6·47-s − 3·49-s + 6·53-s + 8·59-s + 2·61-s − 2·65-s + 8·67-s − 2·71-s − 14·73-s − 4·79-s − 8·83-s − 4·85-s + 14·89-s + 2·91-s + 2·97-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 0.277·13-s − 0.485·17-s + 0.834·23-s − 1/5·25-s − 0.371·29-s − 0.359·31-s − 0.676·35-s − 0.986·37-s + 0.937·41-s + 0.304·43-s + 0.875·47-s − 3/7·49-s + 0.824·53-s + 1.04·59-s + 0.256·61-s − 0.248·65-s + 0.977·67-s − 0.237·71-s − 1.63·73-s − 0.450·79-s − 0.878·83-s − 0.433·85-s + 1.48·89-s + 0.209·91-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14976 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14976\)    =    \(2^{7} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(119.583\)
Root analytic conductor: \(10.9354\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14976,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.25137446930069, −15.87984762195084, −15.24959269476839, −14.55510512475000, −14.16675924608387, −13.32934020893515, −13.16166285531744, −12.56800623041216, −11.86100409703490, −11.24663860554410, −10.50104462766456, −10.14022967786801, −9.354025023828100, −9.134474382523241, −8.393320887159469, −7.489213311828245, −6.952300026498294, −6.380604802432898, −5.662768624151575, −5.249028617771603, −4.295616381161132, −3.608577930658963, −2.724204638009104, −2.166915124695014, −1.185159110513533, 0, 1.185159110513533, 2.166915124695014, 2.724204638009104, 3.608577930658963, 4.295616381161132, 5.249028617771603, 5.662768624151575, 6.380604802432898, 6.952300026498294, 7.489213311828245, 8.393320887159469, 9.134474382523241, 9.354025023828100, 10.14022967786801, 10.50104462766456, 11.24663860554410, 11.86100409703490, 12.56800623041216, 13.16166285531744, 13.32934020893515, 14.16675924608387, 14.55510512475000, 15.24959269476839, 15.87984762195084, 16.25137446930069

Graph of the $Z$-function along the critical line