Properties

Label 2-149454-1.1-c1-0-3
Degree $2$
Conductor $149454$
Sign $1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 2·7-s − 8-s − 10-s − 3·11-s + 2·14-s + 16-s − 2·17-s + 20-s + 3·22-s + 23-s − 4·25-s − 2·28-s − 2·29-s − 5·31-s − 32-s + 2·34-s − 2·35-s − 7·37-s − 40-s − 7·41-s + 8·43-s − 3·44-s − 46-s + 13·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.755·7-s − 0.353·8-s − 0.316·10-s − 0.904·11-s + 0.534·14-s + 1/4·16-s − 0.485·17-s + 0.223·20-s + 0.639·22-s + 0.208·23-s − 4/5·25-s − 0.377·28-s − 0.371·29-s − 0.898·31-s − 0.176·32-s + 0.342·34-s − 0.338·35-s − 1.15·37-s − 0.158·40-s − 1.09·41-s + 1.21·43-s − 0.452·44-s − 0.147·46-s + 1.89·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4716196275\)
\(L(\frac12)\) \(\approx\) \(0.4716196275\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.24727862589298, −12.97877715879841, −12.32200457488849, −12.00163924083125, −11.20139416266078, −10.90325915996794, −10.43080637246551, −9.857710308361170, −9.603641015288010, −9.061757552733868, −8.545639272015868, −8.081025264771394, −7.500050632703076, −6.881400525243445, −6.730618838469522, −5.870629573903461, −5.498276972802190, −5.110243895474437, −4.096145928376281, −3.703218329360723, −2.970648423283987, −2.369548166671795, −1.983012849151041, −1.135891415294210, −0.2351914912300634, 0.2351914912300634, 1.135891415294210, 1.983012849151041, 2.369548166671795, 2.970648423283987, 3.703218329360723, 4.096145928376281, 5.110243895474437, 5.498276972802190, 5.870629573903461, 6.730618838469522, 6.881400525243445, 7.500050632703076, 8.081025264771394, 8.545639272015868, 9.061757552733868, 9.603641015288010, 9.857710308361170, 10.43080637246551, 10.90325915996794, 11.20139416266078, 12.00163924083125, 12.32200457488849, 12.97877715879841, 13.24727862589298

Graph of the $Z$-function along the critical line