Properties

Label 2-149454-1.1-c1-0-28
Degree $2$
Conductor $149454$
Sign $-1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 2·7-s − 8-s − 10-s − 5·11-s − 6·13-s + 2·14-s + 16-s + 4·17-s + 20-s + 5·22-s − 23-s − 4·25-s + 6·26-s − 2·28-s − 9·29-s + 8·31-s − 32-s − 4·34-s − 2·35-s − 8·37-s − 40-s − 2·41-s − 5·43-s − 5·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.755·7-s − 0.353·8-s − 0.316·10-s − 1.50·11-s − 1.66·13-s + 0.534·14-s + 1/4·16-s + 0.970·17-s + 0.223·20-s + 1.06·22-s − 0.208·23-s − 4/5·25-s + 1.17·26-s − 0.377·28-s − 1.67·29-s + 1.43·31-s − 0.176·32-s − 0.685·34-s − 0.338·35-s − 1.31·37-s − 0.158·40-s − 0.312·41-s − 0.762·43-s − 0.753·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56770205675289, −13.09109149383375, −12.53781220120570, −12.10182805350026, −11.85223355255401, −11.01575041549171, −10.49221597204801, −10.12680594221381, −9.732162655585116, −9.529589595090626, −8.797275263769117, −8.139712771843271, −7.803720040113340, −7.232399414722928, −6.987825088465027, −6.147280573518408, −5.670181900071414, −5.272827550000158, −4.751132835733791, −3.874121667947406, −3.200980217451794, −2.724768734365289, −2.190533304301162, −1.659363963406450, −0.5537385711433303, 0, 0.5537385711433303, 1.659363963406450, 2.190533304301162, 2.724768734365289, 3.200980217451794, 3.874121667947406, 4.751132835733791, 5.272827550000158, 5.670181900071414, 6.147280573518408, 6.987825088465027, 7.232399414722928, 7.803720040113340, 8.139712771843271, 8.797275263769117, 9.529589595090626, 9.732162655585116, 10.12680594221381, 10.49221597204801, 11.01575041549171, 11.85223355255401, 12.10182805350026, 12.53781220120570, 13.09109149383375, 13.56770205675289

Graph of the $Z$-function along the critical line