Properties

Label 2-149454-1.1-c1-0-66
Degree $2$
Conductor $149454$
Sign $1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 6·11-s + 2·13-s + 16-s − 2·17-s + 6·22-s − 23-s − 5·25-s − 2·26-s + 2·29-s + 2·31-s − 32-s + 2·34-s − 10·37-s − 6·41-s + 4·43-s − 6·44-s + 46-s + 4·47-s − 7·49-s + 5·50-s + 2·52-s − 10·53-s − 2·58-s − 4·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 1.80·11-s + 0.554·13-s + 1/4·16-s − 0.485·17-s + 1.27·22-s − 0.208·23-s − 25-s − 0.392·26-s + 0.371·29-s + 0.359·31-s − 0.176·32-s + 0.342·34-s − 1.64·37-s − 0.937·41-s + 0.609·43-s − 0.904·44-s + 0.147·46-s + 0.583·47-s − 49-s + 0.707·50-s + 0.277·52-s − 1.37·53-s − 0.262·58-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92099941403549, −13.31528916550292, −12.86784273952342, −12.33802173806470, −11.91020297450108, −11.27355298433729, −10.80038452260563, −10.54152503537316, −9.983690825528542, −9.587915210921256, −8.935710007869246, −8.436029672417668, −8.035064739126618, −7.673831875078060, −7.059905409733508, −6.531656955867428, −5.958851774181117, −5.468781850367179, −4.915913453816375, −4.357025942093197, −3.523791619499304, −3.059770911576320, −2.416274027298992, −1.866579931278528, −1.209214079976432, 0, 0, 1.209214079976432, 1.866579931278528, 2.416274027298992, 3.059770911576320, 3.523791619499304, 4.357025942093197, 4.915913453816375, 5.468781850367179, 5.958851774181117, 6.531656955867428, 7.059905409733508, 7.673831875078060, 8.035064739126618, 8.436029672417668, 8.935710007869246, 9.587915210921256, 9.983690825528542, 10.54152503537316, 10.80038452260563, 11.27355298433729, 11.91020297450108, 12.33802173806470, 12.86784273952342, 13.31528916550292, 13.92099941403549

Graph of the $Z$-function along the critical line