Properties

Label 2-149454-1.1-c1-0-37
Degree $2$
Conductor $149454$
Sign $1$
Analytic cond. $1193.39$
Root an. cond. $34.5455$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s − 2·7-s + 8-s + 2·10-s + 6·11-s − 2·14-s + 16-s + 5·17-s + 2·20-s + 6·22-s − 23-s − 25-s − 2·28-s − 29-s + 7·31-s + 32-s + 5·34-s − 4·35-s − 37-s + 2·40-s − 2·41-s − 43-s + 6·44-s − 46-s − 4·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.755·7-s + 0.353·8-s + 0.632·10-s + 1.80·11-s − 0.534·14-s + 1/4·16-s + 1.21·17-s + 0.447·20-s + 1.27·22-s − 0.208·23-s − 1/5·25-s − 0.377·28-s − 0.185·29-s + 1.25·31-s + 0.176·32-s + 0.857·34-s − 0.676·35-s − 0.164·37-s + 0.316·40-s − 0.312·41-s − 0.152·43-s + 0.904·44-s − 0.147·46-s − 0.583·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 149454 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(149454\)    =    \(2 \cdot 3^{2} \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1193.39\)
Root analytic conductor: \(34.5455\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 149454,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.472997335\)
\(L(\frac12)\) \(\approx\) \(6.472997335\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 5 T + p T^{2} \) 1.17.af
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45103641158083, −12.97509903145767, −12.29301144878499, −12.03555503092199, −11.66244212253849, −11.06385334593183, −10.35762284383807, −9.936321281588727, −9.583431053145184, −9.229369838380187, −8.471517463344177, −8.033853309115750, −7.239182295706729, −6.784486403966677, −6.322097766757821, −6.015056557057651, −5.490887347038417, −4.864958251707949, −4.240808233852248, −3.624378498015489, −3.320166097479205, −2.608457211037503, −1.874849530917670, −1.372384405528714, −0.6766521531326978, 0.6766521531326978, 1.372384405528714, 1.874849530917670, 2.608457211037503, 3.320166097479205, 3.624378498015489, 4.240808233852248, 4.864958251707949, 5.490887347038417, 6.015056557057651, 6.322097766757821, 6.784486403966677, 7.239182295706729, 8.033853309115750, 8.471517463344177, 9.229369838380187, 9.583431053145184, 9.936321281588727, 10.35762284383807, 11.06385334593183, 11.66244212253849, 12.03555503092199, 12.29301144878499, 12.97509903145767, 13.45103641158083

Graph of the $Z$-function along the critical line