Properties

Label 2-145200-1.1-c1-0-201
Degree $2$
Conductor $145200$
Sign $-1$
Analytic cond. $1159.42$
Root an. cond. $34.0503$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 2·13-s − 3·17-s − 3·19-s + 21-s + 23-s + 27-s − 6·29-s − 2·31-s + 3·37-s + 2·39-s − 3·41-s − 12·43-s − 47-s − 6·49-s − 3·51-s + 6·53-s − 3·57-s + 3·59-s + 10·61-s + 63-s − 6·67-s + 69-s + 7·71-s + 2·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.727·17-s − 0.688·19-s + 0.218·21-s + 0.208·23-s + 0.192·27-s − 1.11·29-s − 0.359·31-s + 0.493·37-s + 0.320·39-s − 0.468·41-s − 1.82·43-s − 0.145·47-s − 6/7·49-s − 0.420·51-s + 0.824·53-s − 0.397·57-s + 0.390·59-s + 1.28·61-s + 0.125·63-s − 0.733·67-s + 0.120·69-s + 0.830·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 145200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(145200\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(1159.42\)
Root analytic conductor: \(34.0503\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 145200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.51008199473410, −13.22351255404244, −12.82266306543511, −12.23321981693188, −11.61639249458732, −11.08176492127781, −10.97492586827834, −10.09014162134957, −9.848350993513805, −9.167902341060866, −8.663989244826887, −8.409568330871580, −7.837550939166400, −7.311445769561716, −6.633983501114712, −6.447703391731618, −5.554849674902248, −5.160628180130830, −4.479767346098027, −3.983446722082040, −3.465912761577280, −2.880478107323682, −1.960273330784814, −1.884518138015969, −0.8985916222084224, 0, 0.8985916222084224, 1.884518138015969, 1.960273330784814, 2.880478107323682, 3.465912761577280, 3.983446722082040, 4.479767346098027, 5.160628180130830, 5.554849674902248, 6.447703391731618, 6.633983501114712, 7.311445769561716, 7.837550939166400, 8.409568330871580, 8.663989244826887, 9.167902341060866, 9.848350993513805, 10.09014162134957, 10.97492586827834, 11.08176492127781, 11.61639249458732, 12.23321981693188, 12.82266306543511, 13.22351255404244, 13.51008199473410

Graph of the $Z$-function along the critical line