Properties

Label 2-143650-1.1-c1-0-11
Degree $2$
Conductor $143650$
Sign $1$
Analytic cond. $1147.05$
Root an. cond. $33.8681$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 7-s − 8-s + 9-s − 11-s − 2·12-s + 14-s + 16-s + 17-s − 18-s − 4·19-s + 2·21-s + 22-s + 23-s + 2·24-s + 4·27-s − 28-s + 2·29-s − 6·31-s − 32-s + 2·33-s − 34-s + 36-s + 6·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.577·12-s + 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.917·19-s + 0.436·21-s + 0.213·22-s + 0.208·23-s + 0.408·24-s + 0.769·27-s − 0.188·28-s + 0.371·29-s − 1.07·31-s − 0.176·32-s + 0.348·33-s − 0.171·34-s + 1/6·36-s + 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(143650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1147.05\)
Root analytic conductor: \(33.8681\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 143650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9690255361\)
\(L(\frac12)\) \(\approx\) \(0.9690255361\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + T + p T^{2} \) 1.11.b
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07221212323098, −12.90075585778608, −12.21574482826442, −11.99826843552345, −11.23587887377890, −11.03780328044165, −10.56371017636009, −10.12455687477402, −9.592387998672326, −9.079765625075680, −8.530981510311880, −8.114110358992137, −7.350254664135574, −7.049261983294166, −6.467368809757905, −5.892189219032102, −5.655992458537266, −5.038579909281491, −4.300248763664615, −3.858915151351323, −2.941601598023168, −2.485608349099621, −1.768581901295592, −0.8050930362849369, −0.4956579258149277, 0.4956579258149277, 0.8050930362849369, 1.768581901295592, 2.485608349099621, 2.941601598023168, 3.858915151351323, 4.300248763664615, 5.038579909281491, 5.655992458537266, 5.892189219032102, 6.467368809757905, 7.049261983294166, 7.350254664135574, 8.114110358992137, 8.530981510311880, 9.079765625075680, 9.592387998672326, 10.12455687477402, 10.56371017636009, 11.03780328044165, 11.23587887377890, 11.99826843552345, 12.21574482826442, 12.90075585778608, 13.07221212323098

Graph of the $Z$-function along the critical line