Properties

Label 2-141570-1.1-c1-0-40
Degree $2$
Conductor $141570$
Sign $1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s − 4·7-s + 8-s + 10-s − 13-s − 4·14-s + 16-s + 6·19-s + 20-s + 4·23-s + 25-s − 26-s − 4·28-s + 10·29-s − 4·31-s + 32-s − 4·35-s − 4·37-s + 6·38-s + 40-s + 6·41-s − 4·43-s + 4·46-s + 8·47-s + 9·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.51·7-s + 0.353·8-s + 0.316·10-s − 0.277·13-s − 1.06·14-s + 1/4·16-s + 1.37·19-s + 0.223·20-s + 0.834·23-s + 1/5·25-s − 0.196·26-s − 0.755·28-s + 1.85·29-s − 0.718·31-s + 0.176·32-s − 0.676·35-s − 0.657·37-s + 0.973·38-s + 0.158·40-s + 0.937·41-s − 0.609·43-s + 0.589·46-s + 1.16·47-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.228718664\)
\(L(\frac12)\) \(\approx\) \(4.228718664\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38687148161168, −13.00490227763787, −12.42842950556342, −12.19246717515803, −11.63578899734157, −11.03410894936174, −10.43125947436417, −10.04384679659930, −9.698972154681593, −8.953026678064456, −8.840467391054776, −7.847222708655032, −7.285656802079353, −6.950576108823446, −6.428533436998815, −5.890525942004218, −5.524034504552873, −4.840318749118323, −4.420522573725937, −3.471127424115515, −3.272734362109082, −2.718402366262236, −2.127709971551402, −1.172653436640661, −0.5795365291957699, 0.5795365291957699, 1.172653436640661, 2.127709971551402, 2.718402366262236, 3.272734362109082, 3.471127424115515, 4.420522573725937, 4.840318749118323, 5.524034504552873, 5.890525942004218, 6.428533436998815, 6.950576108823446, 7.285656802079353, 7.847222708655032, 8.840467391054776, 8.953026678064456, 9.698972154681593, 10.04384679659930, 10.43125947436417, 11.03410894936174, 11.63578899734157, 12.19246717515803, 12.42842950556342, 13.00490227763787, 13.38687148161168

Graph of the $Z$-function along the critical line