Properties

Label 2-141570-1.1-c1-0-18
Degree $2$
Conductor $141570$
Sign $1$
Analytic cond. $1130.44$
Root an. cond. $33.6220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 7-s − 8-s − 10-s − 13-s + 14-s + 16-s − 4·19-s + 20-s + 4·23-s + 25-s + 26-s − 28-s − 2·29-s + 8·31-s − 32-s − 35-s + 2·37-s + 4·38-s − 40-s − 9·41-s + 7·43-s − 4·46-s + 47-s − 6·49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.377·7-s − 0.353·8-s − 0.316·10-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.917·19-s + 0.223·20-s + 0.834·23-s + 1/5·25-s + 0.196·26-s − 0.188·28-s − 0.371·29-s + 1.43·31-s − 0.176·32-s − 0.169·35-s + 0.328·37-s + 0.648·38-s − 0.158·40-s − 1.40·41-s + 1.06·43-s − 0.589·46-s + 0.145·47-s − 6/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141570\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1130.44\)
Root analytic conductor: \(33.6220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141570,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.324012520\)
\(L(\frac12)\) \(\approx\) \(1.324012520\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11492972151418, −13.06455202590315, −12.47325202899694, −11.83377501809454, −11.49604673551776, −10.83315711409717, −10.48455571528628, −9.954356530088008, −9.591158090538225, −9.055966990495013, −8.618467690260066, −8.083412849129232, −7.638121874161112, −6.835755101191431, −6.663853623541260, −6.115494864392612, −5.490121882916357, −4.930055972868281, −4.334003313096491, −3.646256511249256, −2.925318293793161, −2.526260098441282, −1.832692519240303, −1.170726260840368, −0.4042657353875676, 0.4042657353875676, 1.170726260840368, 1.832692519240303, 2.526260098441282, 2.925318293793161, 3.646256511249256, 4.334003313096491, 4.930055972868281, 5.490121882916357, 6.115494864392612, 6.663853623541260, 6.835755101191431, 7.638121874161112, 8.083412849129232, 8.618467690260066, 9.055966990495013, 9.591158090538225, 9.954356530088008, 10.48455571528628, 10.83315711409717, 11.49604673551776, 11.83377501809454, 12.47325202899694, 13.06455202590315, 13.11492972151418

Graph of the $Z$-function along the critical line