Properties

Label 2-141120-1.1-c1-0-79
Degree $2$
Conductor $141120$
Sign $1$
Analytic cond. $1126.84$
Root an. cond. $33.5685$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 13-s − 2·17-s + 3·19-s + 6·23-s + 25-s − 6·29-s − 7·31-s − 37-s − 4·41-s − 11·43-s + 6·47-s − 4·53-s + 14·59-s + 6·61-s + 65-s + 3·67-s + 7·73-s − 9·79-s − 16·83-s − 2·85-s + 2·89-s + 3·95-s − 2·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.277·13-s − 0.485·17-s + 0.688·19-s + 1.25·23-s + 1/5·25-s − 1.11·29-s − 1.25·31-s − 0.164·37-s − 0.624·41-s − 1.67·43-s + 0.875·47-s − 0.549·53-s + 1.82·59-s + 0.768·61-s + 0.124·65-s + 0.366·67-s + 0.819·73-s − 1.01·79-s − 1.75·83-s − 0.216·85-s + 0.211·89-s + 0.307·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141120\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1126.84\)
Root analytic conductor: \(33.5685\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.203838370\)
\(L(\frac12)\) \(\approx\) \(2.203838370\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.43780175585885, −12.98570537175805, −12.59607159535074, −11.89070732326315, −11.44157004539641, −11.01368211013368, −10.61302192616719, −9.964760522783601, −9.450838229942936, −9.213204658776053, −8.385592696176897, −8.318836824445549, −7.295386293176914, −7.030855060751498, −6.643956893029723, −5.805377730664493, −5.378614672155324, −5.095325830444615, −4.256191975601684, −3.705559145081336, −3.172226422862643, −2.535483535350225, −1.817464534017646, −1.333858271745248, −0.4408227624165588, 0.4408227624165588, 1.333858271745248, 1.817464534017646, 2.535483535350225, 3.172226422862643, 3.705559145081336, 4.256191975601684, 5.095325830444615, 5.378614672155324, 5.805377730664493, 6.643956893029723, 7.030855060751498, 7.295386293176914, 8.318836824445549, 8.385592696176897, 9.213204658776053, 9.450838229942936, 9.964760522783601, 10.61302192616719, 11.01368211013368, 11.44157004539641, 11.89070732326315, 12.59607159535074, 12.98570537175805, 13.43780175585885

Graph of the $Z$-function along the critical line