Properties

Label 2-141120-1.1-c1-0-336
Degree $2$
Conductor $141120$
Sign $-1$
Analytic cond. $1126.84$
Root an. cond. $33.5685$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·11-s + 6·13-s + 4·17-s − 6·19-s + 25-s − 6·29-s − 4·31-s − 8·37-s + 10·41-s − 2·43-s − 10·47-s + 14·53-s − 4·55-s − 4·59-s − 8·61-s − 6·65-s + 6·67-s − 2·71-s + 10·73-s − 16·79-s − 8·83-s − 4·85-s + 2·89-s + 6·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.20·11-s + 1.66·13-s + 0.970·17-s − 1.37·19-s + 1/5·25-s − 1.11·29-s − 0.718·31-s − 1.31·37-s + 1.56·41-s − 0.304·43-s − 1.45·47-s + 1.92·53-s − 0.539·55-s − 0.520·59-s − 1.02·61-s − 0.744·65-s + 0.733·67-s − 0.237·71-s + 1.17·73-s − 1.80·79-s − 0.878·83-s − 0.433·85-s + 0.211·89-s + 0.615·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141120\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(1126.84\)
Root analytic conductor: \(33.5685\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 141120,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66049397539754, −13.08431808929757, −12.68156585778997, −12.25375953948917, −11.65507636356482, −11.18886374158048, −10.95204684339206, −10.32815919742048, −9.806915587557590, −9.086294546189491, −8.849780660934082, −8.353004014886578, −7.871804909061594, −7.150335272576544, −6.834398986929285, −6.053993299302800, −5.923544012011809, −5.195369425887798, −4.397622045567873, −3.900889358660949, −3.627863811010313, −3.048450276130672, −2.037524614755417, −1.532520612737893, −0.9284077282030424, 0, 0.9284077282030424, 1.532520612737893, 2.037524614755417, 3.048450276130672, 3.627863811010313, 3.900889358660949, 4.397622045567873, 5.195369425887798, 5.923544012011809, 6.053993299302800, 6.834398986929285, 7.150335272576544, 7.871804909061594, 8.353004014886578, 8.849780660934082, 9.086294546189491, 9.806915587557590, 10.32815919742048, 10.95204684339206, 11.18886374158048, 11.65507636356482, 12.25375953948917, 12.68156585778997, 13.08431808929757, 13.66049397539754

Graph of the $Z$-function along the critical line