Properties

Label 2-141120-1.1-c1-0-201
Degree $2$
Conductor $141120$
Sign $1$
Analytic cond. $1126.84$
Root an. cond. $33.5685$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 4·11-s + 6·13-s + 4·17-s + 6·19-s + 25-s − 6·29-s + 4·31-s − 8·37-s + 10·41-s + 2·43-s + 10·47-s + 14·53-s + 4·55-s + 4·59-s − 8·61-s − 6·65-s − 6·67-s + 2·71-s + 10·73-s + 16·79-s + 8·83-s − 4·85-s + 2·89-s − 6·95-s − 2·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.20·11-s + 1.66·13-s + 0.970·17-s + 1.37·19-s + 1/5·25-s − 1.11·29-s + 0.718·31-s − 1.31·37-s + 1.56·41-s + 0.304·43-s + 1.45·47-s + 1.92·53-s + 0.539·55-s + 0.520·59-s − 1.02·61-s − 0.744·65-s − 0.733·67-s + 0.237·71-s + 1.17·73-s + 1.80·79-s + 0.878·83-s − 0.433·85-s + 0.211·89-s − 0.615·95-s − 0.203·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 141120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(141120\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1126.84\)
Root analytic conductor: \(33.5685\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 141120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.217733827\)
\(L(\frac12)\) \(\approx\) \(3.217733827\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54124874382154, −12.89976808416405, −12.45169104863781, −11.96186623361256, −11.50176793134300, −10.93508707839596, −10.60322001795988, −10.14952850643731, −9.533667299495681, −8.925829434263418, −8.607076508880316, −7.921478616899471, −7.458401920608854, −7.356462563323254, −6.359355714950798, −5.889847036546676, −5.427005801915904, −5.025450439936512, −4.201152306595846, −3.586487610656467, −3.348940871119329, −2.587400509171252, −1.922190615882605, −0.9541935256283427, −0.6842034542009715, 0.6842034542009715, 0.9541935256283427, 1.922190615882605, 2.587400509171252, 3.348940871119329, 3.586487610656467, 4.201152306595846, 5.025450439936512, 5.427005801915904, 5.889847036546676, 6.359355714950798, 7.356462563323254, 7.458401920608854, 7.921478616899471, 8.607076508880316, 8.925829434263418, 9.533667299495681, 10.14952850643731, 10.60322001795988, 10.93508707839596, 11.50176793134300, 11.96186623361256, 12.45169104863781, 12.89976808416405, 13.54124874382154

Graph of the $Z$-function along the critical line