Properties

Label 2-139650-1.1-c1-0-78
Degree $2$
Conductor $139650$
Sign $1$
Analytic cond. $1115.11$
Root an. cond. $33.3932$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 6·11-s + 12-s − 4·13-s + 16-s + 18-s − 19-s + 6·22-s − 6·23-s + 24-s − 4·26-s + 27-s + 6·29-s + 4·31-s + 32-s + 6·33-s + 36-s − 2·37-s − 38-s − 4·39-s + 6·41-s − 8·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.288·12-s − 1.10·13-s + 1/4·16-s + 0.235·18-s − 0.229·19-s + 1.27·22-s − 1.25·23-s + 0.204·24-s − 0.784·26-s + 0.192·27-s + 1.11·29-s + 0.718·31-s + 0.176·32-s + 1.04·33-s + 1/6·36-s − 0.328·37-s − 0.162·38-s − 0.640·39-s + 0.937·41-s − 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(139650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1115.11\)
Root analytic conductor: \(33.3932\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 139650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.182544830\)
\(L(\frac12)\) \(\approx\) \(6.182544830\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.62245866606917, −12.91987722706245, −12.36257484248367, −12.09141783699319, −11.67245120362964, −11.26141836394368, −10.28238513909923, −10.16418927220616, −9.603949971677890, −8.996499912396759, −8.576187934287295, −8.056848309279063, −7.335649919852119, −7.056137158648326, −6.399692776664728, −6.094236782970938, −5.372631324844952, −4.687695066679124, −4.163702817273432, −3.969276450689938, −3.143818185683066, −2.641042857697052, −2.007308500576579, −1.429715973239468, −0.6244741387759008, 0.6244741387759008, 1.429715973239468, 2.007308500576579, 2.641042857697052, 3.143818185683066, 3.969276450689938, 4.163702817273432, 4.687695066679124, 5.372631324844952, 6.094236782970938, 6.399692776664728, 7.056137158648326, 7.335649919852119, 8.056848309279063, 8.576187934287295, 8.996499912396759, 9.603949971677890, 10.16418927220616, 10.28238513909923, 11.26141836394368, 11.67245120362964, 12.09141783699319, 12.36257484248367, 12.91987722706245, 13.62245866606917

Graph of the $Z$-function along the critical line