| L(s)  = 1 | + 2-s   + 3-s   + 4-s     + 6-s     + 8-s   + 9-s     + 6·11-s   + 12-s   − 4·13-s       + 16-s     + 18-s   − 19-s       + 6·22-s   − 6·23-s   + 24-s     − 4·26-s   + 27-s     + 6·29-s     + 4·31-s   + 32-s   + 6·33-s       + 36-s   − 2·37-s   − 38-s   − 4·39-s     + 6·41-s     − 8·43-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s   + 0.577·3-s   + 1/2·4-s     + 0.408·6-s     + 0.353·8-s   + 1/3·9-s     + 1.80·11-s   + 0.288·12-s   − 1.10·13-s       + 1/4·16-s     + 0.235·18-s   − 0.229·19-s       + 1.27·22-s   − 1.25·23-s   + 0.204·24-s     − 0.784·26-s   + 0.192·27-s     + 1.11·29-s     + 0.718·31-s   + 0.176·32-s   + 1.04·33-s       + 1/6·36-s   − 0.328·37-s   − 0.162·38-s   − 0.640·39-s     + 0.937·41-s     − 1.21·43-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 139650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(6.182544830\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(6.182544830\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 - T \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 7 | \( 1 \) |  | 
|  | 19 | \( 1 + T \) |  | 
| good | 11 | \( 1 - 6 T + p T^{2} \) | 1.11.ag | 
|  | 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e | 
|  | 17 | \( 1 + p T^{2} \) | 1.17.a | 
|  | 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g | 
|  | 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag | 
|  | 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae | 
|  | 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | 
|  | 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag | 
|  | 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i | 
|  | 47 | \( 1 - 12 T + p T^{2} \) | 1.47.am | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am | 
|  | 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak | 
|  | 67 | \( 1 + 14 T + p T^{2} \) | 1.67.o | 
|  | 71 | \( 1 + 12 T + p T^{2} \) | 1.71.m | 
|  | 73 | \( 1 - 2 T + p T^{2} \) | 1.73.ac | 
|  | 79 | \( 1 + 10 T + p T^{2} \) | 1.79.k | 
|  | 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am | 
|  | 89 | \( 1 + 18 T + p T^{2} \) | 1.89.s | 
|  | 97 | \( 1 - 8 T + p T^{2} \) | 1.97.ai | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.62245866606917, −12.91987722706245, −12.36257484248367, −12.09141783699319, −11.67245120362964, −11.26141836394368, −10.28238513909923, −10.16418927220616, −9.603949971677890, −8.996499912396759, −8.576187934287295, −8.056848309279063, −7.335649919852119, −7.056137158648326, −6.399692776664728, −6.094236782970938, −5.372631324844952, −4.687695066679124, −4.163702817273432, −3.969276450689938, −3.143818185683066, −2.641042857697052, −2.007308500576579, −1.429715973239468, −0.6244741387759008, 
0.6244741387759008, 1.429715973239468, 2.007308500576579, 2.641042857697052, 3.143818185683066, 3.969276450689938, 4.163702817273432, 4.687695066679124, 5.372631324844952, 6.094236782970938, 6.399692776664728, 7.056137158648326, 7.335649919852119, 8.056848309279063, 8.576187934287295, 8.996499912396759, 9.603949971677890, 10.16418927220616, 10.28238513909923, 11.26141836394368, 11.67245120362964, 12.09141783699319, 12.36257484248367, 12.91987722706245, 13.62245866606917
