Properties

Label 2-135200-1.1-c1-0-58
Degree $2$
Conductor $135200$
Sign $-1$
Analytic cond. $1079.57$
Root an. cond. $32.8569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7-s + 6·9-s + 4·11-s − 5·17-s + 6·19-s − 3·21-s + 6·23-s − 9·27-s − 4·29-s − 12·33-s − 3·37-s − 12·41-s + 3·43-s − 7·47-s − 6·49-s + 15·51-s + 2·53-s − 18·57-s − 2·59-s − 12·61-s + 6·63-s − 4·67-s − 18·69-s − 11·71-s + 6·73-s + 4·77-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.377·7-s + 2·9-s + 1.20·11-s − 1.21·17-s + 1.37·19-s − 0.654·21-s + 1.25·23-s − 1.73·27-s − 0.742·29-s − 2.08·33-s − 0.493·37-s − 1.87·41-s + 0.457·43-s − 1.02·47-s − 6/7·49-s + 2.10·51-s + 0.274·53-s − 2.38·57-s − 0.260·59-s − 1.53·61-s + 0.755·63-s − 0.488·67-s − 2.16·69-s − 1.30·71-s + 0.702·73-s + 0.455·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135200\)    =    \(2^{5} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1079.57\)
Root analytic conductor: \(32.8569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 135200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 11 T + p T^{2} \) 1.71.l
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66578563587349, −13.05276161682202, −12.63254591947157, −12.08682865899706, −11.61195047365390, −11.31062375256823, −11.11973410136655, −10.40406352629928, −9.936596904179696, −9.419957838931247, −8.875013591561849, −8.452941685405183, −7.406612556314860, −7.236246042307962, −6.690595355039620, −6.224206258638348, −5.742828101562064, −5.127098211143595, −4.716248825572744, −4.364489824769542, −3.506828713318381, −3.041924854481273, −1.753280386472292, −1.544763372097344, −0.7619007547071479, 0, 0.7619007547071479, 1.544763372097344, 1.753280386472292, 3.041924854481273, 3.506828713318381, 4.364489824769542, 4.716248825572744, 5.127098211143595, 5.742828101562064, 6.224206258638348, 6.690595355039620, 7.236246042307962, 7.406612556314860, 8.452941685405183, 8.875013591561849, 9.419957838931247, 9.936596904179696, 10.40406352629928, 11.11973410136655, 11.31062375256823, 11.61195047365390, 12.08682865899706, 12.63254591947157, 13.05276161682202, 13.66578563587349

Graph of the $Z$-function along the critical line