Properties

Label 2-13440-1.1-c1-0-25
Degree $2$
Conductor $13440$
Sign $1$
Analytic cond. $107.318$
Root an. cond. $10.3594$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 7-s + 9-s + 4·11-s − 6·13-s + 15-s − 6·17-s + 21-s + 4·23-s + 25-s + 27-s + 8·29-s − 2·31-s + 4·33-s + 35-s − 8·37-s − 6·39-s + 4·41-s + 4·43-s + 45-s + 6·47-s + 49-s − 6·51-s − 6·53-s + 4·55-s + 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s + 1.20·11-s − 1.66·13-s + 0.258·15-s − 1.45·17-s + 0.218·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s + 1.48·29-s − 0.359·31-s + 0.696·33-s + 0.169·35-s − 1.31·37-s − 0.960·39-s + 0.624·41-s + 0.609·43-s + 0.149·45-s + 0.875·47-s + 1/7·49-s − 0.840·51-s − 0.824·53-s + 0.539·55-s + 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 13440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(13440\)    =    \(2^{7} \cdot 3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(107.318\)
Root analytic conductor: \(10.3594\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 13440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.093600624\)
\(L(\frac12)\) \(\approx\) \(3.093600624\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.05626252592544, −15.63101294079180, −14.93558170636351, −14.39852724726929, −14.19507031063523, −13.48764650098771, −12.85120610048834, −12.24106199250196, −11.80956213417082, −10.99995900144498, −10.47261476267464, −9.762756889684554, −9.136281826463441, −8.898390530238706, −8.116931207940712, −7.277515603630475, −6.867769274253276, −6.296376906488516, −5.269184407891883, −4.677670995236448, −4.160199206410978, −3.171321689684021, −2.389298464111646, −1.854451569020314, −0.7583078548309707, 0.7583078548309707, 1.854451569020314, 2.389298464111646, 3.171321689684021, 4.160199206410978, 4.677670995236448, 5.269184407891883, 6.296376906488516, 6.867769274253276, 7.277515603630475, 8.116931207940712, 8.898390530238706, 9.136281826463441, 9.762756889684554, 10.47261476267464, 10.99995900144498, 11.80956213417082, 12.24106199250196, 12.85120610048834, 13.48764650098771, 14.19507031063523, 14.39852724726929, 14.93558170636351, 15.63101294079180, 16.05626252592544

Graph of the $Z$-function along the critical line