Properties

Label 2-1344-1.1-c1-0-1
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $10.7318$
Root an. cond. $3.27595$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 7-s + 9-s − 6·13-s + 2·15-s − 2·17-s + 4·19-s + 21-s + 4·23-s − 25-s − 27-s + 10·29-s + 8·31-s + 2·35-s − 6·37-s + 6·39-s − 2·41-s − 4·43-s − 2·45-s − 8·47-s + 49-s + 2·51-s + 10·53-s − 4·57-s + 12·59-s + 2·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s − 1.66·13-s + 0.516·15-s − 0.485·17-s + 0.917·19-s + 0.218·21-s + 0.834·23-s − 1/5·25-s − 0.192·27-s + 1.85·29-s + 1.43·31-s + 0.338·35-s − 0.986·37-s + 0.960·39-s − 0.312·41-s − 0.609·43-s − 0.298·45-s − 1.16·47-s + 1/7·49-s + 0.280·51-s + 1.37·53-s − 0.529·57-s + 1.56·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(10.7318\)
Root analytic conductor: \(3.27595\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8472770573\)
\(L(\frac12)\) \(\approx\) \(0.8472770573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.907669061665662410086615419667, −8.742756249780573873818038490305, −7.909598986797872682521861264692, −7.04895830473267504072201598594, −6.55534782210605698363840663093, −5.17124547767097325451854702106, −4.71122082833635473974871484179, −3.54742556842302716727388578393, −2.49703074453830152772273364467, −0.67099960202093059418976869535, 0.67099960202093059418976869535, 2.49703074453830152772273364467, 3.54742556842302716727388578393, 4.71122082833635473974871484179, 5.17124547767097325451854702106, 6.55534782210605698363840663093, 7.04895830473267504072201598594, 7.909598986797872682521861264692, 8.742756249780573873818038490305, 9.907669061665662410086615419667

Graph of the $Z$-function along the critical line