Properties

Label 1344.b
Number of curves $4$
Conductor $1344$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1344.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1344.b do not have complex multiplication.

Modular form 1344.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} - q^{7} + q^{9} - 6 q^{13} + 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1344.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1344.b1 1344l3 \([0, -1, 0, -16129, -783071]\) \(7080974546692/189\) \(12386304\) \([2]\) \(1536\) \(0.87476\)  
1344.b2 1344l4 \([0, -1, 0, -1569, 3393]\) \(6522128932/3720087\) \(243799621632\) \([2]\) \(1536\) \(0.87476\)  
1344.b3 1344l2 \([0, -1, 0, -1009, -11951]\) \(6940769488/35721\) \(585252864\) \([2, 2]\) \(768\) \(0.52819\)  
1344.b4 1344l1 \([0, -1, 0, -29, -387]\) \(-2725888/64827\) \(-66382848\) \([2]\) \(384\) \(0.18162\) \(\Gamma_0(N)\)-optimal