Properties

Label 2-132800-1.1-c1-0-54
Degree $2$
Conductor $132800$
Sign $-1$
Analytic cond. $1060.41$
Root an. cond. $32.5639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5·7-s + 6·9-s − 3·11-s − 4·13-s + 3·17-s − 4·19-s − 15·21-s + 9·27-s − 5·29-s + 5·31-s − 9·33-s − 3·37-s − 12·39-s − 2·41-s + 4·43-s − 2·47-s + 18·49-s + 9·51-s − 6·53-s − 12·57-s + 7·59-s + 15·61-s − 30·63-s + 6·67-s + 6·71-s + 10·73-s + ⋯
L(s)  = 1  + 1.73·3-s − 1.88·7-s + 2·9-s − 0.904·11-s − 1.10·13-s + 0.727·17-s − 0.917·19-s − 3.27·21-s + 1.73·27-s − 0.928·29-s + 0.898·31-s − 1.56·33-s − 0.493·37-s − 1.92·39-s − 0.312·41-s + 0.609·43-s − 0.291·47-s + 18/7·49-s + 1.26·51-s − 0.824·53-s − 1.58·57-s + 0.911·59-s + 1.92·61-s − 3.77·63-s + 0.733·67-s + 0.712·71-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(132800\)    =    \(2^{6} \cdot 5^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(1060.41\)
Root analytic conductor: \(32.5639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 132800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
83 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 - 15 T + p T^{2} \) 1.61.ap
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66872714392588, −13.23394780654551, −12.82540046351594, −12.50052420174133, −12.16525343358339, −11.19298819960725, −10.55484765592789, −10.02530214178554, −9.674326570278925, −9.557608779866849, −8.858904124691925, −8.232560355961596, −8.025857065952362, −7.293159239453971, −6.913660265487977, −6.522847557922015, −5.666310473467932, −5.204475566843659, −4.357875191488192, −3.815728758820165, −3.359125576743209, −2.854182050632825, −2.396578257471079, −1.990660226605682, −0.8012981468608993, 0, 0.8012981468608993, 1.990660226605682, 2.396578257471079, 2.854182050632825, 3.359125576743209, 3.815728758820165, 4.357875191488192, 5.204475566843659, 5.666310473467932, 6.522847557922015, 6.913660265487977, 7.293159239453971, 8.025857065952362, 8.232560355961596, 8.858904124691925, 9.557608779866849, 9.674326570278925, 10.02530214178554, 10.55484765592789, 11.19298819960725, 12.16525343358339, 12.50052420174133, 12.82540046351594, 13.23394780654551, 13.66872714392588

Graph of the $Z$-function along the critical line