Properties

Label 2-6e4-1.1-c1-0-14
Degree $2$
Conductor $1296$
Sign $-1$
Analytic cond. $10.3486$
Root an. cond. $3.21692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 7-s + 3·11-s − 13-s − 6·17-s + 4·19-s − 3·23-s + 4·25-s − 3·29-s − 5·31-s − 3·35-s + 2·37-s − 3·41-s + 43-s − 9·47-s − 6·49-s + 6·53-s − 9·55-s − 3·59-s − 13·61-s + 3·65-s + 7·67-s − 12·71-s − 10·73-s + 3·77-s − 11·79-s − 9·83-s + ⋯
L(s)  = 1  − 1.34·5-s + 0.377·7-s + 0.904·11-s − 0.277·13-s − 1.45·17-s + 0.917·19-s − 0.625·23-s + 4/5·25-s − 0.557·29-s − 0.898·31-s − 0.507·35-s + 0.328·37-s − 0.468·41-s + 0.152·43-s − 1.31·47-s − 6/7·49-s + 0.824·53-s − 1.21·55-s − 0.390·59-s − 1.66·61-s + 0.372·65-s + 0.855·67-s − 1.42·71-s − 1.17·73-s + 0.341·77-s − 1.23·79-s − 0.987·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1296\)    =    \(2^{4} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(10.3486\)
Root analytic conductor: \(3.21692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1296,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.103199191089479312566176670942, −8.440342643149354363470334721625, −7.56110236514010523446597788878, −7.01090509651629700365382030629, −5.96028486844218902790572750178, −4.72711486021756378251653347205, −4.10568373941110424400504581646, −3.18871842909251669274958257865, −1.69415932861805573668432980190, 0, 1.69415932861805573668432980190, 3.18871842909251669274958257865, 4.10568373941110424400504581646, 4.72711486021756378251653347205, 5.96028486844218902790572750178, 7.01090509651629700365382030629, 7.56110236514010523446597788878, 8.440342643149354363470334721625, 9.103199191089479312566176670942

Graph of the $Z$-function along the critical line