Properties

Label 2-12675-1.1-c1-0-39
Degree $2$
Conductor $12675$
Sign $1$
Analytic cond. $101.210$
Root an. cond. $10.0603$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 2·4-s − 2·6-s − 3·7-s + 9-s − 5·11-s + 2·12-s + 6·14-s − 4·16-s − 3·17-s − 2·18-s − 6·19-s − 3·21-s + 10·22-s − 9·23-s + 27-s − 6·28-s + 8·32-s − 5·33-s + 6·34-s + 2·36-s − 3·37-s + 12·38-s − 5·41-s + 6·42-s + 6·43-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 4-s − 0.816·6-s − 1.13·7-s + 1/3·9-s − 1.50·11-s + 0.577·12-s + 1.60·14-s − 16-s − 0.727·17-s − 0.471·18-s − 1.37·19-s − 0.654·21-s + 2.13·22-s − 1.87·23-s + 0.192·27-s − 1.13·28-s + 1.41·32-s − 0.870·33-s + 1.02·34-s + 1/3·36-s − 0.493·37-s + 1.94·38-s − 0.780·41-s + 0.925·42-s + 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12675\)    =    \(3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(101.210\)
Root analytic conductor: \(10.0603\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 12675,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 15 T + p T^{2} \) 1.79.p
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.79596484656123, −16.32850928431648, −15.79021646658008, −15.55042606492500, −14.78882621866028, −13.94780071544023, −13.31095322793033, −13.06406420249759, −12.35666226846661, −11.57687180162838, −10.72069166664527, −10.20587446598675, −10.10607966694164, −9.247111946748769, −8.731297502916585, −8.216838698105830, −7.701680690048815, −7.033494804637353, −6.398720485834560, −5.734672167515530, −4.615520956538426, −4.011166697544385, −2.964577213664752, −2.352919292510728, −1.671614075766383, 0, 0, 1.671614075766383, 2.352919292510728, 2.964577213664752, 4.011166697544385, 4.615520956538426, 5.734672167515530, 6.398720485834560, 7.033494804637353, 7.701680690048815, 8.216838698105830, 8.731297502916585, 9.247111946748769, 10.10607966694164, 10.20587446598675, 10.72069166664527, 11.57687180162838, 12.35666226846661, 13.06406420249759, 13.31095322793033, 13.94780071544023, 14.78882621866028, 15.55042606492500, 15.79021646658008, 16.32850928431648, 16.79596484656123

Graph of the $Z$-function along the critical line