Properties

Label 2-126400-1.1-c1-0-23
Degree $2$
Conductor $126400$
Sign $1$
Analytic cond. $1009.30$
Root an. cond. $31.7696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·7-s + 9-s + 4·11-s + 2·13-s − 4·17-s − 4·19-s − 4·21-s + 4·23-s + 4·27-s − 2·29-s − 8·33-s − 4·39-s + 6·41-s + 6·43-s + 6·47-s − 3·49-s + 8·51-s − 4·53-s + 8·57-s + 12·59-s + 14·61-s + 2·63-s + 8·67-s − 8·69-s − 14·73-s + 8·77-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.755·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.970·17-s − 0.917·19-s − 0.872·21-s + 0.834·23-s + 0.769·27-s − 0.371·29-s − 1.39·33-s − 0.640·39-s + 0.937·41-s + 0.914·43-s + 0.875·47-s − 3/7·49-s + 1.12·51-s − 0.549·53-s + 1.05·57-s + 1.56·59-s + 1.79·61-s + 0.251·63-s + 0.977·67-s − 0.963·69-s − 1.63·73-s + 0.911·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 126400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(126400\)    =    \(2^{6} \cdot 5^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1009.30\)
Root analytic conductor: \(31.7696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 126400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.139970294\)
\(L(\frac12)\) \(\approx\) \(2.139970294\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25225519201967, −13.06780708122373, −12.47665879720266, −11.93903972829015, −11.39682710758696, −11.21516127196803, −10.87754095416116, −10.30133961368002, −9.656851496713853, −8.992924410990951, −8.678104340353278, −8.270796135546651, −7.392865898108025, −6.936910850572305, −6.518923184193347, −5.929172510807966, −5.636209251096352, −4.867001669342228, −4.427901545934699, −4.024673938762805, −3.296821073199956, −2.372474229988336, −1.852472234443023, −1.011571680292330, −0.5793237752874486, 0.5793237752874486, 1.011571680292330, 1.852472234443023, 2.372474229988336, 3.296821073199956, 4.024673938762805, 4.427901545934699, 4.867001669342228, 5.636209251096352, 5.929172510807966, 6.518923184193347, 6.936910850572305, 7.392865898108025, 8.270796135546651, 8.678104340353278, 8.992924410990951, 9.656851496713853, 10.30133961368002, 10.87754095416116, 11.21516127196803, 11.39682710758696, 11.93903972829015, 12.47665879720266, 13.06780708122373, 13.25225519201967

Graph of the $Z$-function along the critical line