Properties

Label 2-124950-1.1-c1-0-81
Degree $2$
Conductor $124950$
Sign $1$
Analytic cond. $997.730$
Root an. cond. $31.5868$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s − 3·11-s + 12-s + 5·13-s + 16-s − 17-s + 18-s − 2·19-s − 3·22-s + 24-s + 5·26-s + 27-s + 6·29-s − 5·31-s + 32-s − 3·33-s − 34-s + 36-s − 2·37-s − 2·38-s + 5·39-s + 4·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.904·11-s + 0.288·12-s + 1.38·13-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 0.458·19-s − 0.639·22-s + 0.204·24-s + 0.980·26-s + 0.192·27-s + 1.11·29-s − 0.898·31-s + 0.176·32-s − 0.522·33-s − 0.171·34-s + 1/6·36-s − 0.328·37-s − 0.324·38-s + 0.800·39-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124950\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(997.730\)
Root analytic conductor: \(31.5868\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 124950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.778259931\)
\(L(\frac12)\) \(\approx\) \(5.778259931\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 + T \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67461578169808, −13.06959805990695, −12.69386541428301, −12.28730478941617, −11.62196853361625, −11.01190048121942, −10.75115835676779, −10.26764137235334, −9.675406020617034, −9.020488393067574, −8.451865310459928, −8.278056625898777, −7.543519927660369, −7.041463952733278, −6.537025951843997, −5.948512760586530, −5.452449431739726, −4.930516957112261, −4.186117391320948, −3.833087101947074, −3.272053233454606, −2.551900537448093, −2.197985029909881, −1.364375106567262, −0.6246174718203466, 0.6246174718203466, 1.364375106567262, 2.197985029909881, 2.551900537448093, 3.272053233454606, 3.833087101947074, 4.186117391320948, 4.930516957112261, 5.452449431739726, 5.948512760586530, 6.537025951843997, 7.041463952733278, 7.543519927660369, 8.278056625898777, 8.451865310459928, 9.020488393067574, 9.675406020617034, 10.26764137235334, 10.75115835676779, 11.01190048121942, 11.62196853361625, 12.28730478941617, 12.69386541428301, 13.06959805990695, 13.67461578169808

Graph of the $Z$-function along the critical line