Properties

Label 2-124800-1.1-c1-0-17
Degree $2$
Conductor $124800$
Sign $1$
Analytic cond. $996.533$
Root an. cond. $31.5679$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s − 13-s + 6·17-s − 19-s + 2·21-s − 6·23-s − 27-s + 7·29-s + 10·31-s − 7·37-s + 39-s + 3·41-s − 12·43-s − 5·47-s − 3·49-s − 6·51-s − 11·53-s + 57-s + 10·59-s + 2·61-s − 2·63-s + 11·67-s + 6·69-s − 5·71-s − 2·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.277·13-s + 1.45·17-s − 0.229·19-s + 0.436·21-s − 1.25·23-s − 0.192·27-s + 1.29·29-s + 1.79·31-s − 1.15·37-s + 0.160·39-s + 0.468·41-s − 1.82·43-s − 0.729·47-s − 3/7·49-s − 0.840·51-s − 1.51·53-s + 0.132·57-s + 1.30·59-s + 0.256·61-s − 0.251·63-s + 1.34·67-s + 0.722·69-s − 0.593·71-s − 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 124800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(124800\)    =    \(2^{7} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(996.533\)
Root analytic conductor: \(31.5679\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 124800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.316291114\)
\(L(\frac12)\) \(\approx\) \(1.316291114\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57486091427196, −12.99069052957051, −12.34503624863244, −12.12530437491930, −11.81219936792062, −11.14661024358340, −10.45987436720148, −10.07557070234195, −9.830449547372915, −9.368275544789751, −8.394143696495023, −8.174750027670921, −7.688799204351142, −6.845814287308109, −6.443636884081143, −6.250148974070407, −5.378442687209461, −5.038243246918106, −4.458742030597082, −3.665061722517205, −3.302332390079812, −2.623339034405535, −1.859708843426893, −1.109683029064635, −0.4003025555972680, 0.4003025555972680, 1.109683029064635, 1.859708843426893, 2.623339034405535, 3.302332390079812, 3.665061722517205, 4.458742030597082, 5.038243246918106, 5.378442687209461, 6.250148974070407, 6.443636884081143, 6.845814287308109, 7.688799204351142, 8.174750027670921, 8.394143696495023, 9.368275544789751, 9.830449547372915, 10.07557070234195, 10.45987436720148, 11.14661024358340, 11.81219936792062, 12.12530437491930, 12.34503624863244, 12.99069052957051, 13.57486091427196

Graph of the $Z$-function along the critical line