Properties

Label 2-123981-1.1-c1-0-20
Degree $2$
Conductor $123981$
Sign $-1$
Analytic cond. $989.993$
Root an. cond. $31.4641$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 3·5-s + 6-s + 7-s − 3·8-s + 9-s + 3·10-s − 11-s − 12-s − 13-s + 14-s + 3·15-s − 16-s + 18-s + 7·19-s − 3·20-s + 21-s − 22-s − 23-s − 3·24-s + 4·25-s − 26-s + 27-s − 28-s + 2·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 1.34·5-s + 0.408·6-s + 0.377·7-s − 1.06·8-s + 1/3·9-s + 0.948·10-s − 0.301·11-s − 0.288·12-s − 0.277·13-s + 0.267·14-s + 0.774·15-s − 1/4·16-s + 0.235·18-s + 1.60·19-s − 0.670·20-s + 0.218·21-s − 0.213·22-s − 0.208·23-s − 0.612·24-s + 4/5·25-s − 0.196·26-s + 0.192·27-s − 0.188·28-s + 0.371·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123981 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123981 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123981\)    =    \(3 \cdot 11 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(989.993\)
Root analytic conductor: \(31.4641\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 123981,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - T + p T^{2} \) 1.7.ab
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.78390790459310, −13.32619038367196, −13.11856984408378, −12.53140800838196, −11.88839271393395, −11.59112508775166, −10.85113639538301, −10.05531825491839, −9.907434604751052, −9.429899426685540, −9.055635290254499, −8.295262437196801, −8.032128287858728, −7.359932633106354, −6.564682085461324, −6.298826704505978, −5.441708168721769, −5.265252958596704, −4.770323584214517, −4.153239794565256, −3.318783045006577, −3.041459402108439, −2.379693567795888, −1.665795226974087, −1.120069213906982, 0, 1.120069213906982, 1.665795226974087, 2.379693567795888, 3.041459402108439, 3.318783045006577, 4.153239794565256, 4.770323584214517, 5.265252958596704, 5.441708168721769, 6.298826704505978, 6.564682085461324, 7.359932633106354, 8.032128287858728, 8.295262437196801, 9.055635290254499, 9.429899426685540, 9.907434604751052, 10.05531825491839, 10.85113639538301, 11.59112508775166, 11.88839271393395, 12.53140800838196, 13.11856984408378, 13.32619038367196, 13.78390790459310

Graph of the $Z$-function along the critical line