Properties

Label 2-123210-1.1-c1-0-61
Degree $2$
Conductor $123210$
Sign $1$
Analytic cond. $983.836$
Root an. cond. $31.3661$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 2·7-s + 8-s − 10-s + 6·11-s + 4·13-s + 2·14-s + 16-s + 6·17-s + 4·19-s − 20-s + 6·22-s + 25-s + 4·26-s + 2·28-s + 6·29-s + 4·31-s + 32-s + 6·34-s − 2·35-s + 4·38-s − 40-s − 8·43-s + 6·44-s − 3·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.755·7-s + 0.353·8-s − 0.316·10-s + 1.80·11-s + 1.10·13-s + 0.534·14-s + 1/4·16-s + 1.45·17-s + 0.917·19-s − 0.223·20-s + 1.27·22-s + 1/5·25-s + 0.784·26-s + 0.377·28-s + 1.11·29-s + 0.718·31-s + 0.176·32-s + 1.02·34-s − 0.338·35-s + 0.648·38-s − 0.158·40-s − 1.21·43-s + 0.904·44-s − 3/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 123210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(123210\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(983.836\)
Root analytic conductor: \(31.3661\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 123210,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.279395909\)
\(L(\frac12)\) \(\approx\) \(7.279395909\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.69603124531805, −13.17433227711801, −12.32567803618560, −12.03197476553982, −11.79467399080031, −11.28055689442088, −10.86180653112523, −10.16061583017665, −9.727633521551985, −9.088347929476367, −8.520389919019504, −8.111379170844803, −7.596561599443696, −7.011777144435767, −6.434893405113720, −6.065263172615597, −5.471247462504951, −4.772503961580788, −4.412068273099095, −3.783697270617241, −3.255550200521985, −2.940866788033962, −1.601112529440110, −1.436646559777194, −0.8004943350052762, 0.8004943350052762, 1.436646559777194, 1.601112529440110, 2.940866788033962, 3.255550200521985, 3.783697270617241, 4.412068273099095, 4.772503961580788, 5.471247462504951, 6.065263172615597, 6.434893405113720, 7.011777144435767, 7.596561599443696, 8.111379170844803, 8.520389919019504, 9.088347929476367, 9.727633521551985, 10.16061583017665, 10.86180653112523, 11.28055689442088, 11.79467399080031, 12.03197476553982, 12.32567803618560, 13.17433227711801, 13.69603124531805

Graph of the $Z$-function along the critical line