Properties

Label 2-12240-1.1-c1-0-23
Degree $2$
Conductor $12240$
Sign $1$
Analytic cond. $97.7368$
Root an. cond. $9.88619$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 4·11-s + 4·13-s − 17-s + 4·19-s + 4·23-s + 25-s + 10·29-s + 2·35-s + 2·37-s − 4·41-s + 10·43-s − 3·49-s + 2·53-s − 4·55-s + 2·59-s + 2·61-s − 4·65-s − 6·67-s − 6·71-s − 8·73-s − 8·77-s − 4·79-s + 16·83-s + 85-s − 14·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 1.20·11-s + 1.10·13-s − 0.242·17-s + 0.917·19-s + 0.834·23-s + 1/5·25-s + 1.85·29-s + 0.338·35-s + 0.328·37-s − 0.624·41-s + 1.52·43-s − 3/7·49-s + 0.274·53-s − 0.539·55-s + 0.260·59-s + 0.256·61-s − 0.496·65-s − 0.733·67-s − 0.712·71-s − 0.936·73-s − 0.911·77-s − 0.450·79-s + 1.75·83-s + 0.108·85-s − 1.48·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12240\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(97.7368\)
Root analytic conductor: \(9.88619\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 12240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.259433599\)
\(L(\frac12)\) \(\approx\) \(2.259433599\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.19466072749426, −15.94728714517394, −15.28342638488729, −14.68344146702868, −13.98168847901613, −13.60698603049447, −12.92421454223704, −12.30122056536326, −11.78062751563521, −11.25749714580760, −10.63388200485970, −9.936540128150880, −9.285819894507699, −8.796998747599434, −8.250111979031079, −7.359086475003327, −6.769300478708924, −6.293938841780331, −5.618422868484421, −4.634719289462718, −4.044408319175151, −3.315571507862891, −2.781644427578691, −1.417995784035817, −0.7600514988023767, 0.7600514988023767, 1.417995784035817, 2.781644427578691, 3.315571507862891, 4.044408319175151, 4.634719289462718, 5.618422868484421, 6.293938841780331, 6.769300478708924, 7.359086475003327, 8.250111979031079, 8.796998747599434, 9.285819894507699, 9.936540128150880, 10.63388200485970, 11.25749714580760, 11.78062751563521, 12.30122056536326, 12.92421454223704, 13.60698603049447, 13.98168847901613, 14.68344146702868, 15.28342638488729, 15.94728714517394, 16.19466072749426

Graph of the $Z$-function along the critical line