Properties

Label 2-1224-1.1-c1-0-7
Degree $2$
Conductor $1224$
Sign $1$
Analytic cond. $9.77368$
Root an. cond. $3.12629$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s + 6·11-s + 2·13-s − 17-s − 6·23-s − 25-s + 10·29-s + 2·31-s − 4·35-s + 6·37-s + 6·41-s − 8·43-s − 3·49-s + 10·53-s + 12·55-s + 8·59-s + 14·61-s + 4·65-s + 4·67-s − 2·71-s − 14·73-s − 12·77-s − 10·79-s − 8·83-s − 2·85-s + 10·89-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s + 1.80·11-s + 0.554·13-s − 0.242·17-s − 1.25·23-s − 1/5·25-s + 1.85·29-s + 0.359·31-s − 0.676·35-s + 0.986·37-s + 0.937·41-s − 1.21·43-s − 3/7·49-s + 1.37·53-s + 1.61·55-s + 1.04·59-s + 1.79·61-s + 0.496·65-s + 0.488·67-s − 0.237·71-s − 1.63·73-s − 1.36·77-s − 1.12·79-s − 0.878·83-s − 0.216·85-s + 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1224\)    =    \(2^{3} \cdot 3^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(9.77368\)
Root analytic conductor: \(3.12629\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1224,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.005174125\)
\(L(\frac12)\) \(\approx\) \(2.005174125\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.912053904035992312982696740571, −8.965330077436591257889235047076, −8.331420707616764826583042598870, −6.95556909204739164167709631680, −6.32076764353867371001165550609, −5.84493337287348416539622628292, −4.42426362198009611408546968702, −3.62388232922820390627798777230, −2.37082491510612846557132007360, −1.14755912620769522242228089263, 1.14755912620769522242228089263, 2.37082491510612846557132007360, 3.62388232922820390627798777230, 4.42426362198009611408546968702, 5.84493337287348416539622628292, 6.32076764353867371001165550609, 6.95556909204739164167709631680, 8.331420707616764826583042598870, 8.965330077436591257889235047076, 9.912053904035992312982696740571

Graph of the $Z$-function along the critical line