Properties

Label 2-122304-1.1-c1-0-25
Degree $2$
Conductor $122304$
Sign $1$
Analytic cond. $976.602$
Root an. cond. $31.2506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 13-s − 2·17-s + 2·19-s − 8·23-s − 5·25-s − 27-s − 6·29-s + 2·31-s + 6·37-s − 39-s + 4·43-s + 8·47-s + 2·51-s + 6·53-s − 2·57-s − 4·59-s + 2·61-s + 2·67-s + 8·69-s − 4·71-s + 2·73-s + 5·75-s − 12·79-s + 81-s + 12·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 0.277·13-s − 0.485·17-s + 0.458·19-s − 1.66·23-s − 25-s − 0.192·27-s − 1.11·29-s + 0.359·31-s + 0.986·37-s − 0.160·39-s + 0.609·43-s + 1.16·47-s + 0.280·51-s + 0.824·53-s − 0.264·57-s − 0.520·59-s + 0.256·61-s + 0.244·67-s + 0.963·69-s − 0.474·71-s + 0.234·73-s + 0.577·75-s − 1.35·79-s + 1/9·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(122304\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(976.602\)
Root analytic conductor: \(31.2506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 122304,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.234080549\)
\(L(\frac12)\) \(\approx\) \(1.234080549\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45426401285167, −13.14959696787218, −12.51101527303131, −11.97312891387234, −11.70014225562950, −11.15735281140407, −10.71948241139500, −10.10875993362286, −9.752893196069427, −9.219299577441423, −8.674173212649856, −8.021133771421935, −7.579868250145779, −7.175032376623269, −6.412004181641808, −5.901000305627581, −5.720504818399867, −4.971828107136823, −4.198015160199142, −4.028267575156641, −3.294595234057173, −2.390082231585328, −1.983185189636757, −1.158614831342795, −0.3736084768378405, 0.3736084768378405, 1.158614831342795, 1.983185189636757, 2.390082231585328, 3.294595234057173, 4.028267575156641, 4.198015160199142, 4.971828107136823, 5.720504818399867, 5.901000305627581, 6.412004181641808, 7.175032376623269, 7.579868250145779, 8.021133771421935, 8.674173212649856, 9.219299577441423, 9.752893196069427, 10.10875993362286, 10.71948241139500, 11.15735281140407, 11.70014225562950, 11.97312891387234, 12.51101527303131, 13.14959696787218, 13.45426401285167

Graph of the $Z$-function along the critical line