Properties

Label 2-121680-1.1-c1-0-60
Degree $2$
Conductor $121680$
Sign $-1$
Analytic cond. $971.619$
Root an. cond. $31.1708$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·7-s − 5·11-s − 5·17-s − 19-s − 23-s + 25-s + 9·29-s − 4·31-s − 3·35-s + 3·37-s − 41-s + 3·43-s + 8·47-s + 2·49-s − 10·53-s − 5·55-s − 3·59-s + 7·61-s − 9·67-s − 7·71-s − 10·73-s + 15·77-s + 16·79-s − 12·83-s − 5·85-s + 15·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.13·7-s − 1.50·11-s − 1.21·17-s − 0.229·19-s − 0.208·23-s + 1/5·25-s + 1.67·29-s − 0.718·31-s − 0.507·35-s + 0.493·37-s − 0.156·41-s + 0.457·43-s + 1.16·47-s + 2/7·49-s − 1.37·53-s − 0.674·55-s − 0.390·59-s + 0.896·61-s − 1.09·67-s − 0.830·71-s − 1.17·73-s + 1.70·77-s + 1.80·79-s − 1.31·83-s − 0.542·85-s + 1.58·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 121680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 121680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(121680\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(971.619\)
Root analytic conductor: \(31.1708\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 121680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56356852443007, −13.29207096297523, −12.96094103276567, −12.44630780521186, −12.02204954728258, −11.26489937474618, −10.72194564123815, −10.42503832334946, −9.971403218221361, −9.433476789153681, −8.898832454904328, −8.531718154872987, −7.779493473442317, −7.407584771752742, −6.703272330522870, −6.282408119984158, −5.902083422841506, −5.198914021828106, −4.690238894795008, −4.157539324569604, −3.343999227407690, −2.768760625857585, −2.448347523718104, −1.707954962908037, −0.6603269919762897, 0, 0.6603269919762897, 1.707954962908037, 2.448347523718104, 2.768760625857585, 3.343999227407690, 4.157539324569604, 4.690238894795008, 5.198914021828106, 5.902083422841506, 6.282408119984158, 6.703272330522870, 7.407584771752742, 7.779493473442317, 8.531718154872987, 8.898832454904328, 9.433476789153681, 9.971403218221361, 10.42503832334946, 10.72194564123815, 11.26489937474618, 12.02204954728258, 12.44630780521186, 12.96094103276567, 13.29207096297523, 13.56356852443007

Graph of the $Z$-function along the critical line