Properties

Label 2-12138-1.1-c1-0-18
Degree $2$
Conductor $12138$
Sign $-1$
Analytic cond. $96.9224$
Root an. cond. $9.84491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s + 9-s + 10-s − 3·11-s + 12-s − 3·13-s − 14-s − 15-s + 16-s − 18-s + 6·19-s − 20-s + 21-s + 3·22-s + 2·23-s − 24-s − 4·25-s + 3·26-s + 27-s + 28-s − 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.904·11-s + 0.288·12-s − 0.832·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.235·18-s + 1.37·19-s − 0.223·20-s + 0.218·21-s + 0.639·22-s + 0.417·23-s − 0.204·24-s − 4/5·25-s + 0.588·26-s + 0.192·27-s + 0.188·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12138 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(12138\)    =    \(2 \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(96.9224\)
Root analytic conductor: \(9.84491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 12138,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 3 T + p T^{2} \) 1.13.d
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.54804532044997, −16.13915469669009, −15.49677801573278, −14.94291599575459, −14.69185588912418, −13.69932485671266, −13.38037733079491, −12.57027530672249, −11.98465919985189, −11.40721590576473, −10.89069111199760, −10.08519145237171, −9.685224058760290, −9.081293619920947, −8.380446278440312, −7.743250807712128, −7.439271425567797, −6.929468288875933, −5.667366537464310, −5.326701073495526, −4.341015404473173, −3.587681188438429, −2.746706622776947, −2.168605089148612, −1.131614320527872, 0, 1.131614320527872, 2.168605089148612, 2.746706622776947, 3.587681188438429, 4.341015404473173, 5.326701073495526, 5.667366537464310, 6.929468288875933, 7.439271425567797, 7.743250807712128, 8.380446278440312, 9.081293619920947, 9.685224058760290, 10.08519145237171, 10.89069111199760, 11.40721590576473, 11.98465919985189, 12.57027530672249, 13.38037733079491, 13.69932485671266, 14.69185588912418, 14.94291599575459, 15.49677801573278, 16.13915469669009, 16.54804532044997

Graph of the $Z$-function along the critical line